Attributed to its significance in a wide range of practical applications, the post-buckling behavior of a beam with lateral constraints has drawn much attention in the last few decades. Despite the fact that, in reality, the lateral constraints are often flexible or deformable, vast majority of studies have considered fixed and rigid lateral constraints. In this paper, we make a step toward bridging this gap by studying the post-buckling behavior of a planar beam that is laterally constrained by a deformable wall. Unfortunately, the interaction with a compliant wall prevents derivation of closed-form analytical solutions. Nevertheless, careful examination of the governing equations of a simplified model reveals general properties of the solution, and let us identify the key features that govern the behavior. Specifically, we construct universal “solution maps” that do not depend on the mode number and enable simple and easy prediction of the contact conditions and of the mode-switching force (the force at which the system undergoes instantaneous transition from one equilibrium configuration (or mode) to another). The predictions of the mathematical model are validated against finite element (FE) simulations.

References

References
1.
Feodosyev
,
V. I.
,
1977
,
Selected Problems and Questions in Strength of Materials
,
Mir Publishers
,
Moscow, Russia
.
2.
Link
,
H.
,
1954
, “
Über den Geraden Knickstab mit Begrenzter Durchbiegung
,”
Ing.-Arch.
,
22
(
4
), pp.
237
250
.
3.
Miersemann
,
E.
,
Mittelmann
,
H. D.
, and
Törnig
,
W.
,
1986
, “
A Free Boundary Problem and Stability for the Nonlinear Beam
,”
Math. Methods Appl. Sci.
,
8
(
1
), pp.
516
532
.
4.
Holmes
,
P.
,
Domokos
,
G.
,
Schmitt
,
J.
, and
Szeberényi
,
I.
,
1999
, “
Constrained Euler Buckling: An Interplay of Computation and Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
170
(
3–4
), pp.
175
207
.
5.
Adan
,
N.
,
Sheinman
,
I.
, and
Altus
,
E.
,
1994
, “
Post-Buckling Behavior of Beams Under Contact Constraints
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
764
772
.
6.
Pocheau
,
A.
, and
Roman
,
B.
,
2004
, “
Uniqueness of Solutions for Constrained Elastica
,”
Phys. D
,
192
(
3–4
), pp.
161
186
.
7.
Ro
,
W.-C.
,
Chen
,
J.-S.
, and
Hong
,
S.-Y.
,
2010
, “
Vibration and Stability of a Constrained Elastica With Variable Length
,”
Int. J. Solids Struct.
,
47
(
16
), pp.
2143
2154
.
8.
Doraiswamy
,
S.
,
Narayanan
,
K. R.
, and
Srinivasa
,
A. R.
,
2012
, “
Finding Minimum Energy Configurations for Constrained Beam Buckling Problems Using the Viterbi Algorithm
,”
Int. J. Solids Struct.
,
49
(
2
), pp.
289
297
.
9.
Wang
,
T. Y.
,
Koh
,
C. G.
, and
Liaw
,
C. Y.
,
2010
, “
Post-Buckling Analysis of Planar Elastica Using a Hybrid Numerical Strategy
,”
Comput. Struct.
,
88
(
11–12
), pp.
785
795
.
10.
Borchani
,
W.
,
Lajnef
,
N.
, and
Burgueño
,
R.
,
2015
, “
Energy Method Solution for the Postbuckling Response of an Axially Loaded Bilaterally Constrained Beam
,”
Mech. Res. Commun.
,
70
, pp.
114
119
.
11.
Denoel
,
V.
, and
Detournay
,
E.
,
2011
, “
Eulerian Formulation of Constrained Elastica
,”
Int. J. Solids Struct.
,
48
(
3–4
), pp.
625
636
.
12.
Adams
,
G. G.
, and
Benson
,
R. C.
,
1986
, “
Postbuckling of an Elastic Plate in a Rigid Channel
,”
Int. J. Mech. Sci.
,
28
(
3
), pp.
153
162
.
13.
Roman
,
B.
, and
Pocheau
,
A.
,
1999
, “
Buckling Cascade of Thin Plates: Forms, Constraints and Similarity
,”
EPL (Europhys. Lett.)
,
46
(
5
), p.
602
.
14.
Roman
,
B.
, and
Pocheau
,
A.
,
2002
, “
Postbuckling of Bilaterally Constrained Rectangular Thin Plates
,”
J. Mech. Phys. Solids
,
50
(
11
), pp.
2379
2401
.
15.
Manning
,
R. S.
, and
Bulman
,
G. B.
,
2005
, “
Stability of an Elastic Rod Buckling Into a Soft Wall
,”
Proc. R. Soc. A
,
461
(
2060
), pp.
2423
2450
.
16.
Villaggio
,
P.
,
1979
, “
Buckling Under Unilateral Constraints
,”
Int. J. Solids Struct.
,
15
(
3
), pp.
193
201
.
17.
Soong
,
T. C.
, and
Choi
,
I.
,
1986
, “
An Elastica That Involves Continuous and Multiple Discrete Contacts With a Boundary
,”
Int. J. Mech. Sci.
,
28
(
1
), pp.
1
10
.
18.
Miersemann
,
E.
, and
Mittelmann
,
H. D.
,
1991
, “
Stability and Continuation of Solutions to Obstacle Problems
,”
J. Comput. Appl. Math.
,
35
(
1–3
), pp.
5
31
.
19.
Chen
,
J.-S.
, and
Hung
,
S.-Y.
,
2014
, “
Deformation and Stability of an Elastica Constrained by Curved Surfaces
,”
Int. J. Mech. Sci.
,
82
, pp.
1
12
.
20.
Chen
,
J.-S.
, and
Li
,
C.-W.
,
2007
, “
Planar Elastica Inside a Curved Tube With Clearance
,”
Int. J. Solids Struct.
,
44
(
18–19
), pp.
6173
6186
.
21.
Lu
,
Z.-H.
, and
Chen
,
J.-S.
,
2008
, “
Deformations of a Clamped–Clamped Elastica Inside a Circular Channel With Clearance
,”
Int. J. Solids Struct.
,
45
(
9
), pp.
2470
2492
.
22.
Wang
,
Z.
,
Ruimi
,
A.
, and
Srinivasa
,
A. R.
,
2015
, “
A Direct Minimization Technique for Finding Minimum Energy Configurations for Beam Buckling and Post-Buckling Problems With Constraints
,”
Int. J. Solids Struct.
,
72
, pp.
165
173
.
23.
Chen
,
J.-S.
, and
Ro
,
W.-C.
,
2012
, “
Vibration Method in Stability Analysis of Planar Constrained Elastica
,”
Advances in Computational Stability Analysis
,
S. B.
Coşkun
, ed.,
InTech
, Rijeka, Croatia.
24.
Chateau
,
X.
, and
Nguyen
,
Q. S.
,
1991
, “
Buckling of Elastic Structures in Unilateral Contact With or Without Friction
,”
Eur. J. Mech. A, Solids
,
10
(
1
), pp.
71
89
.
25.
Chai
,
H.
,
2002
, “
On the Post-Buckling Behavior of Bilaterally Constrained Plates
,”
Int. J. Solids Struct.
,
39
(
11
), pp.
2911
2926
.
26.
Liu
,
C.-W.
, and
Chen
,
J.-S.
,
2013
, “
Effect of Coulomb Friction on the Deformation of an Elastica Constrained in a Straight Channel With Clearance
,”
Eur. J. Mech. A/Solids
,
39
, pp.
50
59
.
27.
Vaz
,
M. A.
, and
Patel
,
M. H.
,
1995
, “
Analysis of Drill Strings in Vertical and Deviated Holes Using the Galerkin Technique
,”
Eng. Struct.
,
17
(
6
), pp.
437
442
.
28.
Thompson
,
J. M. T.
,
Silveira
,
M.
,
Heijden
,
G. H. M. V. D.
, and
Wiercigroch
,
M.
,
2012
, “
Helical Post-Buckling of a Rod in a Cylinder: With Applications to Drill-Strings
,”
Proc. R. Soc. A
,
468
(2142), pp. 1591–1614.
29.
Lubinski
,
A.
, and
Althouse
,
W. S.
,
1962
, “
Helical Buckling of Tubing Sealed in Packers
,”
J. Pet. Technol.
,
14
(
6
), pp.
655
670
.
30.
Tan
,
X. C.
, and
Forsman
,
B.
,
1995
, “
Buckling of Slender String in Cylindrical Tube Under Axial Load: Experiments and Theoretical Analysis
,”
Exp. Mech.
,
35
(
1
), pp.
55
60
.
31.
Fang
,
J.
,
Li
,
S. Y.
, and
Chen
,
J. S.
,
2013
, “
On a Compressed Spatial Elastica Constrained Inside a Tube
,”
Acta Mech.
,
224
(
11
), pp.
2635
2647
.
32.
Miller
,
J. T.
,
Su
,
T.
,
Dussan
,
V. E. B.
,
Pabon
,
J.
,
Wicks
,
N.
,
Bertoldi
,
K.
, and
Reis
,
P. M.
,
2015
, “
Buckling-Induced Lock-Up of a Slender Rod Injected Into a Horizontal Cylinder
,”
Int. J. Solids Struct.
,
72
, pp.
153
164
.
33.
Leijnse
,
N.
,
Oddershede
,
L. B.
, and
Bendix
,
P. M.
,
2015
, “
Helical Buckling of Actin Inside Filopodia Generates Traction
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
1
), pp.
136
141
.
34.
Pronk
,
S.
,
Geissler
,
P. L.
, and
Fletcher
,
D. A.
,
2008
, “
The Limits of Filopodium Stability
,”
Phys. Rev. Lett.
,
100
(
25
), p.
258102
.
35.
Daniels
,
D. R.
, and
Turner
,
M. S.
,
2013
, “
Islands of Conformational Stability for Filopodia
,”
PLoS One
,
8
(
3
), p.
e59010
.
36.
Hajianmaleki
,
M.
, and
Daily
,
J. S.
,
2014
, “
Advances in Critical Buckling Load Assessment for Tubulars Inside Wellbores
,”
J. Pet. Sci. Eng.
,
116
, pp.
136
144
.
37.
Mattila
,
P. K.
, and
Lappalainen
,
P.
,
2008
, “
Filopodia: Molecular Architecture and Cellular Functions
,”
Nat. Rev. Mol. Cell Biol.
,
9
(
6
), pp.
446
454
.
38.
Faix
,
J.
, and
Rottner
,
K.
,
2006
, “
The Making of Filopodia
,”
Curr. Opin. Cell Biol.
,
18
(
1
), pp.
18
25
.
39.
Latson
,
L.
, and
Qureshi
,
A.
,
2010
, “
Techniques for Transcatheter Recanalization of Completely Occluded Vessels and Pathways in Patients With Congenital Heart Disease
,”
Ann. Pediatr. Cardiol.
,
3
(
2
), pp.
140
146
.
40.
Schneider
,
P. A.
,
2005
,
Endovascular Skills: Guidewire and Catheter Skills for Endovascular Surgery
,
Marcel Dekker
,
New York
.
41.
Alderliesten
,
T.
,
Konings
,
M. K.
, and
Niessen
,
W. J.
,
2007
, “
Modeling Friction, Intrinsic Curvature, and Rotation of Guide Wires for Simulation of Minimally Invasive Vascular Interventions
,”
IEEE Trans. Biomed. Eng.
,
54
(
1
), pp.
29
38
.
42.
Katz
,
S.
, and
Givli
,
S.
,
2015
, “
The Post-Buckling Behavior of a Beam Constrained by Springy Walls
,”
J. Mech. Phys. Solids
,
78
, pp.
443
466
.
43.
Lagrange
,
R.
, and
Averbuch
,
D.
,
2012
, “
Solution Methods for the Growth of a Repeating Imperfection in the Line of a Strut on a Nonlinear Foundation
,”
Int. J. Mech. Sci.
,
63
(
1
), pp.
48
58
.
44.
Li
,
R.
,
Li
,
M.
,
Su
,
Y. W.
,
Song
,
J. Z.
, and
Ni
,
X. Q.
,
2013
, “
An Analytical Mechanics Model for the Island-Bridge Structure of Stretchable Electronics
,”
Soft Matter
,
9
(
35
), pp.
8476
8482
.
45.
Tzaros
,
K. A.
, and
Mistakidis
,
E. S.
,
2011
, “
The Unilateral Contact Buckling Problem of Continuous Beams in the Presence of Initial Geometric Imperfections: An Analytical Approach Based on the Theory of Elastic Stability
,”
Int. J. Nonlinear Mech.
,
46
(
9
), pp.
1265
1274
.
46.
Papachristou
,
K. S.
, and
Sophianopoulos
,
D. S.
,
2013
, “
Buckling of Beams on Elastic Foundation Considering Discontinuous (Unbonded) Contact
,”
Int. J. Mech. Appl.
,
3
(
1
), pp.
4
12
.
47.
Chai
,
H.
,
1998
, “
The Post-Buckling Response of a Bi-Laterally Constrained Column
,”
J. Mech. Phys. Solids
,
46
(
7
), pp.
1155
1181
.
48.
Genna
,
F.
, and
Bregoli
,
G.
,
2014
, “
Small Amplitude Elastic Buckling of a Beam Under Monotonic Axial Loading, With Frictionless Contact Against Movable Rigid Surfaces
,”
J. Mech. Mater. Struct.
,
9
(
4
), pp.
441
463
.
49.
Benichou
,
I.
, and
Givli
,
S.
,
2011
, “
The Hidden Ingenuity in Titin Structure
,”
Appl. Phys. Lett.
,
98
(
9
), p. 091904.
50.
Benichou
,
I.
, and
Givli
,
S.
,
2013
, “
Structures Undergoing Discrete Phase Transformation
,”
J. Mech. Phys. Solids
,
61
(
1
), pp.
94
113
.
51.
Benichou
,
I.
, and
Givli
,
S.
,
2015
, “
Rate Dependent Response of Nanoscale Structures Having a Multiwell Energy Landscape
,”
Phys. Rev. Lett.
,
114
(
9
), p. 095504.
52.
Benichou
,
I.
,
Zhang
,
Y.
,
Dudko
,
O. K.
, and
Givli
,
S.
,
2016
, “
The Rate Dependent Response of a Bistable Chain at Finite Temperature
,”
J. Mech. Phys. Solids
,
95
, pp.
44
63
.
You do not currently have access to this content.