Knowledge of the subcritical crack growth (SCG) in cement-based materials subject to concurrent physical and chemical attacks is of great importance for understanding and mitigating the chemomechanical deterioration in concrete structural members. In this study, the SCG in hardened cement pastes is investigated experimentally by a novel test approach aided with microcharacterization. In the test, specimens of negative geometry are designed, which enable the use of load control to trigger stable crack propagation in hardened cement pastes. Multiple specimens, cast from the same batch of mixture, are exposed to the same chemical condition and loaded at the same age. With the aid of a high-resolution microscopy system, which is used to trace the crack tip, the average trend and the associated variation of the dependence of crack velocity v on the stress intensity factor K at the crack tip are obtained. Different from static fatigue, three distinctive regions are captured in the K–v curves of specimens experiencing chemomechanical deterioration. With the help of advanced techniques including scanning electron microscopy (SEM), atomic-force microscopy (AFM), and Raman spectroscopy, the microstructure destruction and chemical composition change induced by the imposed chemomechanical attack are characterized at different stages. In addition to the physical insights for deeper understanding of the coupled effect of chemomechanical attack, these experimental results provide important macro- and microscopic benchmarks for the theoretical modeling and numerical investigation in the future studies.

References

References
1.
Wiederhorn
,
S. M.
,
1967
, “
Influence of Water Vapor on Crack Propagation in Soda-Lime Glass
,”
J. Am. Ceram. Soc.
,
50
(
8
), pp.
407
414
.
2.
Wiederhorn
,
S. M.
,
Freiman
,
S. W.
,
Fuller
,
E. R.
, and
Simmons
,
C. J.
,
1982
, “
Effects of Water and Other Dielectrics on Crack Growth
,”
J. Mater. Sci.
,
17
(
12
), pp.
3460
3478
.
3.
Atkinson
,
B. K.
,
1984
, “
Subcritical Crack Growth in Geological Materials
,”
J. Geophys. Res.
,
89
(
B6
), pp.
4077
4114
.
4.
Swanson
,
P. L.
,
1984
, “
Subcritical Crack Growth and Other Time- and Environment-Dependent Behavior in Crustal Rocks
,”
J. Geophys. Res.
,
89
(B
6
), pp.
4137
4152
.
5.
Freiman
,
S. W.
,
Mulville
,
D. R.
, and
Mast
,
P. W.
,
1973
, “
Crack Propagation Studies in Brittle Materials
,”
J. Mater. Sci.
,
8
(
11
), pp.
1527
1533
.
6.
Evans
,
A. G.
,
1972
, “
A Method for Evaluating the Time-Dependent Failure Characteristics of Brittle Materials and Its Application to Polycrystalline Alumina
,”
J. Mater. Sci.
,
7
(
10
), pp.
1137
1146
.
7.
Janssen
,
C.
,
1977
, “
Specimen for Fracture Mechanics Studies on Glass
,”
Rev. Phys. Appl.
,
12
(
5
), pp.
803
803
.
8.
Williams
,
D. P.
, and
Evans
,
A. G.
,
1973
, “
A Simple Method for Studying Slow Crack Growth
,”
J. Test. Eval.
,
1
(
4
), pp.
264
270
.
9.
Shyam
,
A.
, and
Lara-Curzio
,
E.
,
2006
, “
The Double-Torsion Testing Technique for Determination of Fracture Toughness and Slow Crack Growth Behavior of Materials: A Review
,”
J. Mater. Sci.
,
41
(
13
), pp.
4093
4104
.
10.
Wiederhorn
,
S. M.
,
1968
, “
Moisture Assisted Crack Growth in Ceramics
,”
Int. J. Fract. Mech.
,
4
(
2
), pp.
171
177
.
11.
Atkinson
,
B. K.
,
1982
, “
Subcritical Crack Propagation in Rocks: Theory, Experimental Results and Applications
,”
J. Struct. Geol.
,
4
(
1
), pp.
41
56
.
12.
Cai
,
W.
,
2012
, “
Subcritical Crack Growth in Hardened Cement Paste
,”
Ph.D. dissertation
, Eidgenössische Technische Hochschule ETH Zürich, Zürich, Switzerland.
13.
Irwin
,
G. R.
,
1958
,
Fracture Encyclopedia of Physics
, Vol.
6
,
Springer
,
Berlin
.
14.
Bazant
,
Z. P.
, and
Planas
,
J.
,
1997
,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC Press
,
Boca Raton, FL
.
15.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
2000
,
The Stress Analysis of Cracks Handbook
,
ASME Press
,
New York
.
16.
ASTM
,
1997
, “
Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
,” American Society For Testing and Materials, West Conshohocken, PA, Standard No. ASTM
C39/C39M-15
.
17.
Xu
,
S.
, and
Zhu
,
Y.
,
2009
, “
Experimental Determination of Fracture Parameters for Crack Propagation in Hardening Cement Paste and Mortar
,”
Int. J. Fract.
,
157
(
1–2
), pp.
33
43
.
18.
Nguyen
,
V. H.
,
Colina
,
H.
,
Torrenti
,
J. M.
,
Boulay
,
C.
, and
Nedjar
,
B.
,
2007
, “
Chemo-Mechanical Coupling Behaviour of Leached Concrete—Part I: Experimental Results
,”
Nucl. Eng. Des.
,
237
(
20
), pp.
2083
2089
.
19.
ASTM
,
2016
, “
Standard Test Method for Dry and Wet Bulk Density, Water Absorption, and Apparent Porosity of Thin Sections of Glass-Fiber Reinforced Concrete
,” American Society For Testing and Materials, West Conshohocken, PA, Standard No.
ASTM C948-81
.
20.
Hazle
,
M. A.
,
Mehicic
,
M.
,
Gardiner
,
D. J.
, and
Graves
,
P. R.
,
1990
,
Practical Raman Spectroscopy
,
Springer
,
Berlin/Heidelberg, Germany
.
21.
Potgieter-Vermaak
,
S. S.
,
Potgieter
,
J. H.
, and
Van Grieken
,
R.
,
2006
, “
The Application of Raman Spectrometry to Investigate and Characterize Cement—Part I: A Review
,”
Cem. Concr. Res.
,
36
(
4
), pp.
656
662
.
22.
Potgieter-Vermaak
,
S. S.
,
Potgieter
,
J. H.
,
Belleil
,
M.
,
Deweerdt
,
F.
, and
Van Grieken
,
R.
,
2006
, “
The Application of Raman Spectrometry to the Investigation of Cement—Part II: A Micro-Raman Study of OPC, Slag and Fly Ash
,”
Cem. Concr. Res.
,
36
(
4
), pp.
663
670
.
23.
Liu
,
F.
,
Sun
,
Z.
, and
Qi
,
C.
,
2014
, “
Raman Spectroscopy Study on the Hydration Behaviors of Portland Cement Pastes During Setting
,”
J. Mater. Civ. Eng.
,
27
(
8
), p.
4014223
.
24.
Liu
,
F.
,
Sun
,
Z.
, and
Qi
,
C.
,
2015
, “
Raman Spectroscopy of the Dehydration Process of Gypsums
,”
Adv. Cem. Res.
,
27
(
8
), pp.
434
446
.
25.
Machovic
,
V.
,
Kolar
,
F.
,
Prochazka
,
P. P.
,
Peskova
,
S.
, and
Kuklik
,
P.
,
2006
, “
Raman Spectroscopy Study of Interfacial Transition Zone in Cement Compostie Reinforced By PP/PE and Basalt Fibres
,”
Acta Geodyn. Geomater.
,
3
(
2
), pp.
63
67
.
26.
Tan
,
S.
,
Sherman
,
R. L.
, and
Ford
,
W. T.
,
2004
, “
Nanoscale Compression of Polymer Microspheres By Atomic Force Microscopy
,”
Langmuir
,
20
(
17
), pp.
7015
7020
.
27.
Mondal
,
P.
,
2008
, “
Nanomechanical Properties of Cementitious Materials
,”
Ph.D. thesis
,
Northwestern University
,
Evanston, IL
.
28.
Liu
,
Q.
,
Tong
,
T.
,
Liu
,
S.
,
Yang
,
D.
, and
Yu
,
Q.
,
2014
, “
Investigation of Using Hybrid Recycled Powder From Demolished Concrete Solids and Clay Bricks as a Pozzolanic Supplement for Cement
,”
Constr. Build. Mater.
,
73
, pp.
754
763
.
You do not currently have access to this content.