For components with different defects, selecting a proper criterion to predict their failure is very important, but sometimes this brings confusion to engineers. In this paper, we explore to establish a unified failure criterion for defects with various geometries. First, a fundamental and universal law on failure that all criteria should follow, so-called the zeroth law of failure, is introduced, and the failure is completely governed by the local status of failure determining zone (FDZ), such as the stress distribution, material properties, and geometrical features. Failure criteria lacking a local dimension parameter within FDZ may have limited applicability, such as the traditional strength and fracture criteria. We choose the blunt V-notch as an example to demonstrate how to establish a unified failure criterion for quasi-brittle materials, and a series of experiments are carried out to verify its applicability. The proposed unified failure criterion and some existing failure criteria are also discussed and compared. The failure criteria that only include a single critical constant are incapable of reflecting the whole stress field information and local geometrical features of the FDZ. Our proposed unified failure criterion is expressed with a two-parameter function and has a wider applicability.

References

References
1.
Christensen
,
R. M.
,
2016
, “
Perspective on Materials Failure Theory and Applications
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111001
.
2.
Neuber
,
H.
,
1958
,
Theory of Notch Stress
,
Springer
,
Berlin, Germany
.
3.
Novozhilov
,
V.
,
1969
, “
On a Necessary and Sufficient Condition for Brittle Strength
,”
Prikl. Mat. Mekh.
,
33
(
2
), pp.
212
222
.
4.
Pugno
,
N.
, and
Ruoff
,
R.
,
2004
, “
Quantized Fracture Mechanics
,”
Philos. Mag. A
,
84
(
27
), pp.
2829
2845
.
5.
Taylor
,
D.
,
2004
, “
Predicting the Fracture Strength of Ceramic Materials Using the Theory of Critical Distances
,”
Eng. Fract. Mech.
,
71
(
16–17
), pp.
2407
2416
.
6.
Lazzarin
,
P.
, and
Berto
,
F.
,
2005
, “
Some Expressions for the Strain Energy in a Finite Volume Surrounding the Root of Blunt V-Notches
,”
Int. J. Fract.
,
135
(
1
), pp.
161
185
.
7.
Cornetti
,
P.
,
Pugno
,
N.
,
Carpinteri
,
A.
, and
Taylor
,
D.
,
2006
, “
Finite Fracture Mechanics: A Coupled Stress and Energy Failure Criterion
,”
Eng. Fract. Mech.
,
73
(
14
), pp.
2021
2033
.
8.
Carpinteri
,
A.
,
Cornetti
,
P.
, and
Sapora
,
A.
,
2011
, “
Brittle Failures at Rounded V-Notches: A Finite Fracture Mechanics Approach
,”
Int. J. Fract.
,
172
(
1
), pp.
1
8
.
9.
Mohammadipour
,
A.
, and
Willam
,
K.
,
2016
, “
Lattice Approach in Continuum and Fracture Mechanics
,”
ASME J. Appl. Mech.
,
83
(
7
), p.
071003
.
10.
Seweryn
,
A.
,
1994
, “
Brittle Fracture Criterion for Structures With Sharp Notches
,”
Eng. Fract. Mech.
,
47
(
5
), pp.
673
681
.
11.
Ritchie
,
R. O.
,
Knott
,
J. F.
, and
Rice
,
J. R.
,
1973
, “
On the Relation Between Critical Tensile Stress and Fracture Toughness in Mild Steel
,”
J. Mech. Phys. Solids
,
21
(
6
), pp.
395
410
.
12.
Taylor
,
D.
,
2007
,
The Theory of Critical Distances: A New Perspective in Fracture Mechanics
,
Elsevier Science and Technology
,
London
.
13.
Leguillon
,
D.
,
2002
, “
Strength or Toughness? A Criterion for Crack Onset at a Notch
,”
Eur. J. Mech. Phys. A/Solids
,
21
(
1
), pp.
61
72
.
14.
Taylor
,
D.
,
Cornetti
,
P.
, and
Pugno
,
N.
,
2005
, “
The Fracture Mechanics of Finite Crack Extension
,”
Eng. Fract. Mech.
,
72
(
7
), pp.
1021
1038
.
15.
Sih
,
G. C.
, and
Macdonald
,
B.
,
1974
, “
Fracture Mechanics Applied to Engineering Problems-Strain Energy Density Fracture Criterion
,”
Eng. Fract. Mech.
,
6
(
2
), pp.
361
386
.
16.
Lazzarin
,
P.
, and
Zambardi
,
R.
,
2001
, “
A Finite-Volume-Energy Based Approach to Predict the Static and Fatigue Behavior of Components With Sharp V-Shaped Notches
,”
Int. J. Fract.
,
112
(
3
), pp.
275
298
.
17.
Lazzarin
,
P.
, and
Tovo
,
R.
,
1996
, “
A Unified Approach to the Evaluation of Linear Elastic Stress Fields in the Neighborhood of Cracks and Notches
,”
Int. J. Fract.
,
78
(
1
), pp.
3
19
.
18.
Lindner
,
D.
,
Mathieu
,
F.
,
Francois
,
H.
,
Olivier
,
A.
,
Cuong
,
H.-M.
, and
Olivier
,
P.-C.
,
2015
, “
On the Evaluation of Stress Triaxiality Fields in a Notched Titanium Alloy Sample Via Integrated Digital Image Correlation
,”
ASME J. Appl. Mech.
,
82
(
7
), p.
071014
.
19.
Gross
,
R.
, and
Mendelson
,
A.
,
1972
, “
Plane Elastostatic Analysis of V-Notched Plates
,”
Int. J. Fract. Mech.
,
8
(
3
), pp.
267
276
.
20.
Leguillon
,
D.
, and
Yosibash
,
Z.
,
2003
, “
Crack Onset at a V-Notch. Influence of the Notch Tip Radius
,”
Int. J. Fract.
,
122
(
1
), pp.
1
21
.
21.
Gearing
,
B. P.
, and
Anand
,
L.
,
2004
, “
Notch-Sensitive Fracture of Polycarbonate
,”
Int. J. Solids Struct.
,
41
(
3–4
), pp.
827
845
.
22.
Lazzarin
,
P.
, and
Filippi
,
S.
,
2006
, “
A Generalized Stress Intensity Factor to be Applied to Rounded V-Shaped Notches
,”
Int. J. Solids Struct.
,
43
(
9
), pp.
2461
2478
.
23.
Torki
,
M. E.
,
Benzerga
,
A. A.
, and
Leblond
,
J.-B.
,
2015
, “
On Void Coalescence Under Combined Tension and Shear
,”
ASME J. Appl. Mech.
,
82
(
7
), p.
071005
.
24.
Liu
,
B.
,
Huang
,
Y.
,
Jiang
,
H.
,
Qu
,
S.
, and
Hwang
,
K. C.
,
2004
, “
The Atomic-Scale Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
17–20
), pp.
1849
1864
.
25.
Liu
,
B.
,
Jiang
,
H.
,
Huang
,
Y.
,
Qu
,
S.
,
Yu
,
M. F.
, and
Hwang
,
K. C.
,
2005
, “
Atomic-Scale Finite Element Method in Multiscale Computation With Applications to Carbon Nanotubes
,”
Phys. Rev. B
,
72
(
3
), p.
035435
.
26.
Balamane
,
H.
,
Halicioglu
,
T.
, and
Tiller
,
W. A.
,
1992
, “
Comparative Study of Silicon Empirical Interatomic Potentials
,”
Phys. Rev. B
,
46
(
4
), pp.
2250
2079
.
27.
Bolding
,
C. B.
, and
Anderson
,
C. H.
,
1990
, “
Interatomic Potential for Silicon Clusters, Crystals, and Surfaces
,”
Phys. Rev. B
,
41
(
15
), p.
10568
.
28.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
1985
,
The Stress Analysis of Cracks Handbook
, 3rd ed.,
ASME Press
,
New York
.
29.
Bazant
,
Z. P.
,
1984
, “
Size Effect in Blunt Fracture: Concrete, Rock, Metal
,”
J. Eng. Mech.
,
110
(
4
), pp.
518
535
.
30.
Bazant
,
Z. P.
, and
Kazemi
,
M. T.
,
1990
, “
Size Effect in Fracture of Ceramics and Its Use to Determine Fracture Energy and Effective Process Zone Length
,”
J. Am. Chem. Soc.
,
73
(
7
), pp.
1841
1853
.
31.
Bazant
,
Z. P.
,
Ozbolt
,
J.
, and
Eligehausen
,
R.
,
1994
, “
Fracture Size Effect: Review of Evidence for Concrete Structures
,”
J. Struct. Eng.
,
120
(
8
), pp.
2377
2398
.
32.
Bazant
,
Z. P.
, and
Chen
,
E. P.
,
1997
, “
Scaling of Structural Failure
,”
ASME Appl. Mech. Rev.
,
50
(
10
), pp.
593
627
.
33.
Bazant
,
Z. P.
,
2000
, “
Size Effect
,”
Int. J. Solids Struct.
,
37
(
1–2
), pp.
69
80
.
34.
Bazant
,
Z. P.
,
2004
, “
Scaling Theory for Quasibrittle Structural Failure
,”
Proc. Natl. Acad. Sci.
,
101
(
37
), pp.
13400
13407
.
35.
Gao
,
H. J.
, and
Huang
,
Y. G.
,
2003
, “
Geometrically Necessary Dislocation and Size-Dependent Plasticity
,”
Scr. Mater.
,
48
(
2
), pp.
113
118
.
36.
ABAQUS
,
2014
, “
ABAQUS Theory Manual and Users Manual, Version 6.14
,” ABAQUS Inc., Providence, RI.
37.
Peterson
,
R. E.
,
1959
, “
Notch-Sensitivity
,”
Metal Fatigue
,
G.
Sines
, and
J. L.
Waisman
, eds., McGraw-Hill, New York, pp.
293
306
.
38.
Christensen
,
R. M.
,
2015
, “
Evaluation of Ductile/Brittle Failure Theory and Derivation of the Ductile/Brittle Transition Temperature
,”
ASME J. Appl. Mech.
,
83
(
2
), p.
021001
.
39.
Aboudi
,
J.
, and
Volokh
,
K. Y.
,
2015
, “
Failure Prediction of Unidirectional Composites Undergoing Large Deformations
,”
ASME J. Appl. Mech.
,
82
(
7
), p.
071004
.
40.
Bouklas
,
N.
,
Landis
,
C. M.
, and
Huang
,
R.
,
2015
, “
Effect of Solvent Diffusion on Crack-Tip Fields and Driving Force for Fracture of Hydrogels
,”
ASME J. Appl. Mech.
,
82
(
8
), p.
081007
.
You do not currently have access to this content.