This paper investigates the influence exerted by small surface tension on the nonlinear normal sloshing modes of a two-dimensional irrotational, incompressible fluid in a rectangular container. To this end, the influence of surface tension on the modal frequencies is investigated by assuming pure slipping at the contact line and a 90 deg contact angle between the fluid surface and the walls. The regions of possible nonlinear internal resonances up to the fifth mode are highlighted. Away from the highlighted regions, the influence of surface tension on the effective nonlinearity of the lowest four modes is studied and used to shed light onto its effect on the softening/hardening behavior of the uncoupled nonlinear modes. Subsequently, the response of the sloshing waves near two-to-one internal resonances is studied. It is shown that, in the vicinity of such internal resonance, the steady-state sloshing response can either contain a contribution from the two interacting modes (coupled-mode response) or only the high-frequency mode (high-frequency uncoupled mode response). The regions where the coupled mode uniquely exists are shown to depend on the surface tension. Moreover, it is demonstrated that such regions may be underestimated considerably when neglecting the influence of the cubic nonlinearities.

References

References
1.
Penney
,
W. G.
, and
Price
,
A. T.
,
1952
, “
Finite Periodic Stationary Waves in a Perfect Liquid—Part II
,”
Philos. Trans. R. Soc., A
,
224
(882), pp. 254–284.
2.
Abramson
,
H. N.
,
1963
, “
Dynamics of Contained Liquids: A Personal Odyssey
,”
ASME Appl. Mech. Rev.
,
16
(7), pp. 501–506.
3.
Kiefling
,
L.
, and
Feng
,
G. C.
,
1976
, “
Fluid-Structure Finite Element Vibrational Analysis
,”
AIAA J.
,
14
(
2
), pp.
199
203
.
4.
Veldman
,
A. E. P.
, and
Vogels
,
M. E. S.
,
1987
, “
Axisymmetric Liquid Sloshing Under Low-Gravity Conditions
,”
Acta Astronaut.
,
11
(
10–11
), pp.
641
649
.
5.
Banerji
,
P.
,
Murudi
,
M.
,
Shah
,
A. H.
, and
Popplewell
,
N.
,
2000
, “
Tuned Liquid Dampers for Controlling Earthquake Response of Structures
,”
Earthquake Eng. Struct. Dyn.
,
29
(
5
), pp.
587
602
.
6.
Jin
,
Q.
,
Li
,
X.
,
Sun
,
N.
,
Zhou
,
J.
, and
Guan
,
J.
,
2007
, “
Experimental and Numerical Study on Tuned Liquid Dampers for Controlling Earthquake Response of Jacket Offshore Platform
,”
Mar. Struct.
,
20
(
4
), pp.
238
254
.
7.
Welt
,
F.
, and
Modi
,
V. J.
,
1992
, “
Vibration Damping Through Liquid Sloshing—Part I
,”
Trans. ASME
,
114
(1), pp. 10–16.
8.
Ikeda
,
T.
, and
Ibrahim
,
R.
,
2014
, “
Passive Vibration Control of Structures Subjected to Random Ground Excitation Utilizing Sloshing in Rectangular Tanks
,”
ASME J. Pressure Vessel Technol.
,
136
(1), pp. 011801–0118010.
9.
Alazmi
,
S.
,
Bibo
,
A.
, and
Daqaq
,
M. F.
,
2015
, “
A Ferrofluid-Based Energy Harvester: An Experimental Investigation Involving Internally-Resonant Sloshing Modes
,”
Eur. Phys. J. Spec. Top.
,
224
(14), pp. 2993–3004.
10.
Fox
,
D. W.
, and
Kuttler
,
J. R.
,
1983
, “
Sloshing Frequencies
,”
Z. Angew. Math. Phys.
,
34
(
5
), pp.
668
696
.
11.
McIver
,
P.
,
1989
, “
Sloshing Frequencies for Cylindrical and Spherical Containers Filled to an Arbitrary Depth
,”
J. Fluid Mech.
,
201
, pp.
243
257
.
12.
Ibrahim
,
R. A.
,
2005
,
Liquid Sloshing Dynamics: Theory and Applications
,
Cambridge University Press
, Cambridge, UK.
13.
Abramson
,
H. N.
,
1966
, The Dynamic Behavior of Liquids in Moving Containers, With Applications to Space Vehicle Technology, Report No. NASA-SP-106.
14.
Abramson
,
H. N.
,
Chu
,
W.
, and
Garza
,
L. R.
,
1963
, “
Liquid Sloshing in Spherical Tanks
,”
AIAA J.
,
1
(
2
), pp.
384
389
.
15.
Abramson
,
H. N.
,
Garza
,
L. R.
, and
Kana
,
D. D.
,
1962
, “Some Notes on Liquid Sloshing in Compartmented Cylindrical Tanks,”
Amer. Rocket Soc. J.
,
32
(6), pp. 978–980.
16.
Garza
,
L. R.
,
1964
, “
Measurements of Liquid Natural Frequencies and Damping in Compartmented Cylindrical Tanks
,” SWRI, Technical Report No. 8.
17.
Dalzell
,
J. F.
,
Chu
,
W. H.
, and
Modisette
,
J. E.
,
1964
, “
Studies of Ship Roll Stabilization Tanks
,” DTIC Document, Technical Report No. 1.
18.
Abramson
,
H. N.
, and
Garza
,
L. R.
,
1965
, “
Liquid Frequencies and Damping in Compartmented Cylindrical Tanks
,”
J. Spacecr. Rockets
,
2
(
3
), pp.
453
455
.
19.
Chiba
,
M.
,
1992
, “
Nonlinear Hydroelastic Vibration of a Cylindrical Tank With an Elastic Bottom, Containing Liquid—Part I: Experiment
,”
J. Fluids Struct.
,
6
(
2
), pp.
181
206
.
20.
Kimura
,
N.
, and
Ohashi
,
H.
,
1978
, “
Nonlinear Sloshing in Containers With Arbitrary Axi-Symmetric Geometries: 1st Report, Derivation of Governing Equations and the Behavior of Their Solutions
,”
Trans. JSME
,
44
(
385
), pp.
3024
3033
.
21.
Komatsu
,
K.
,
1987
, “
Non-Linear Sloshing Analysis of Liquid in Tanks With Arbitrary Geometries
,”
Int. J. Non-Linear Mech.
,
22
(
3
), pp.
193
207
.
22.
Liu
,
Z.
, and
Huang
,
Y.
,
1994
, “
A New Method for Large Amplitude Sloshing Problems
,”
J. Sound Vib.
,
175
(
2
), pp.
185
195
.
23.
Kana
,
D. D.
,
1987
, “
A Model for Nonlinear Rotary Slosh in Propellant Tanks
,”
J. Spacecr. Rockets
,
24
(
2
), pp.
169
177
.
24.
Tong
,
P.
,
1966
, Liquid Sloshing in an Elastic Container, Ph.D. dissertation, California Institute of Technology, Pasadena, CA.
25.
Penney
,
W. G.
, and
Price
,
A. T.
,
1952
, “
Part I—The Diffraction Theory of Sea Waves and the Shelter Afforded by Breakwaters
,”
Philos. Trans. R. Soc., A
,
244
(
882
), pp.
236
253
.
26.
Moiseev
,
N. N.
,
1958
, “
On the Theory of Nonlinear Vibrations of a Liquid of Finite Volume
,”
J. Appl. Math. Mech.
,
22
(
5
), pp.
860
872
.
27.
Faltinsen
,
O. M.
,
1978
, “
A Numerical Nonlinear Method of Sloshing in Tanks With Two-Dimensional Flow
,”
J. Ship Res.
,
22
(
3
), pp. 193–202.
28.
Solaas
,
F.
, and
Faltinsen
,
O. M.
,
1997
, “
Combined Numerical and Analytical Solution for Sloshing in Two-Dimensional Tanks of General Shape
,”
J. Ship Res.
,
41
(
2
), pp.
118
129
.
29.
Hutton
,
R. E.
,
1963
, An Investigation of Resonant, Nonlinear, Nonplanar Free Surface Oscillations of a Fluid, Report No. NASA-TN-D-1870.
30.
Abramson
,
H. N.
,
Chu
,
W. H.
, and
Kana
,
D. D.
,
1966
, “
Some Studies of Nonlinear Lateral Sloshing in Rigid Containers
,”
ASME J. Appl. Mech.
,
33
(
4
), pp.
777
784
.
31.
Bauer
,
H. F.
, and
Woodward
,
J. H.
,
1970
, “
Fluid Behavior in a Longitudinally Excited, Cylindrical Task of Arbitrary Sector-Annular Cross Section
,”
AIAA J.
,
8
(
4
), pp.
713
719
.
32.
Rogge
,
T. R.
, and
Weiss
,
H. J.
,
1965
, An Approximate Nonlinear Analysis of the Stability of Sloshing Modes Under Translational and Rotational Excitation, Report No. NASA-CR-220.
33.
Woodward
,
J. H.
,
1966
, Fluid Motion in a Cylindrical Tank of Sector-Annular Cross Section When Subjected to a Longitudinal Excitation, Ph.D. Dissertation, Georgia Tech University, Atlanta, GA.
34.
Armenio
,
V.
, and
Rocca
,
M. L.
,
1966
, “
On the Analysis of Sloshing of Water in Rectangular Containers: Numerical Study and Experimental Validation
,”
Ocean Eng.
,
23
(8), pp. 705–739.
35.
Hayama
,
S.
,
Aruga
,
K.
, and
Watanabe
,
T.
,
1983
, “
Nonlinear Responses of Sloshing in Rectangular Tanks : 1st Report, Nonlinear Responses of Surface Elevation
,”
Bull. JSME
,
26
(219), pp. 1641–1648.
36.
Chen
,
B.
, and
Saffman
,
P. G.
,
1979
, “
Steady Gravity-Capillary Waves on Deep Water—I: Weakly Non-Linear Waves
,”
Studies Appl. Math.
,
60
(3), pp. 183–210.
37.
Pomeau
,
Y.
,
2002
, “
Recent Progress in the Moving Contact-Line Problem: A Review
,”
C. R. Mec.
,
330
(3), pp. 207–222.
38.
Benjamin
,
T. B.
, and
Scott
,
J. C.
,
1979
, “
Gravity-Capillary Waves With Edge Constraints
,”
J. Fluid Mech.
,
92
(2), pp. 241–267.
39.
Bauer
,
H. F.
,
1992
, “
Liquid Oscillations of Spherical and Conical Systems With Anchored Edges Under Zero Gravity
,”
Arch. Appl. Mech.
,
62
(8), pp. 517–529.
40.
Hocking
,
L.
,
1987
, “
The Damping of Capillary-Gravity Waves at a Rigid Boundary
,”
J. Fluid Mech.
,
179
(1), pp. 253–266.
41.
Miles
,
J.
,
1992
, “
On Surface Waves With Zero Contact Angle
,”
J. Fluid Mech.
,
245
(1), pp. 485–492.
42.
Kidambi
,
R.
, and
Shankar
,
P. N.
,
2004
, “
The Effects of the Contact Angle on Sloshing in Containers
,”
Proc. R. Soc.
,
460
(2048), pp. 2251–2267.
43.
Nayfeh
,
A. H.
,
2000
,
Nonlinear Interactions
,
Wiley-Interscience
,
New York
.
44.
Hayama
,
S.
,
Aruga
,
K.
, and
Watanabe
,
T.
,
1983
, “
Nonlinear Responses of Sloshing in a Rectangular Container: 1st Report, Resonant Responses of Surface Elevation
,”
Trans. Jpn. Soc. Mech. Eng., Ser. C
,
49
(
437
), pp.
22
30
.
You do not currently have access to this content.