We provide experimental evidence of the mitigation properties of metaconcrete under blast loading. Mitigation is achieved through resonance of engineered aggregates consisting of a heavy and stiff core coated by a light and compliant outer layer. These engineered aggregates replace the standard gravel in conventional concrete. To assess experimentally the attenuation properties of metaconcrete, we have cast two batches of cylindrical specimens. The mortar matrix of the first batch consists of cement combined with a regular sand mix, while the mortar matrix of the second batch consists of cement combined with sand mix, fine gravel, and polymeric fibers. One of the specimens of each batch was cast with no aggregates, while the other two contained 40 and 60, respectively, randomly arranged 22 mm diameter commercially available computer mouse balls. We performed nondestructive dynamic tests by applying a 10 V amplitude periodic signal to one end of the specimens and measuring the amplitude of the transmitted signal received at the other end. We observed a remarkable 2 order of magnitude reduction in the amplitude of the transmitted signal in metaconcrete relative to conventional concrete.

References

References
1.
Troxell
,
G. E.
, and
Davis
,
H. E.
,
1956
,
Composition and the Properties of Concrete
,
McGraw-Hill
,
New York
.
2.
Mitchell
,
S. J.
,
Pandolfi
,
A.
, and
Ortiz
,
M.
,
2014
, “
Metaconcrete: Designed Aggregates to Enhance Dynamic Performance
,”
J. Mech. Phys. Solids
,
65
, pp.
69
81
.
3.
Mitchell
,
S. J.
,
Pandolfi
,
A.
, and
Ortiz
,
M.
,
2015
, “
Investigation of Elastic Wave Transmission in a Metaconcrete Slab
,”
Mech. Mater.
,
91
(Part 1), pp.
295
303
.
4.
Walser
,
R. M.
,
2001
, “
Electromagnetic Metamaterials
,”
Complex Mediums—II: Beyond Linear Isotropic Dielectrics, Proc. SPIE
,
4467
, pp.
1
15
.
5.
de Espinosa
,
F. R. M.
,
Jimenez
,
E.
, and
Torres
,
M.
,
1998
, “
Ultrasonic Band Gap in a Periodic Two-Dimensional Composite
,”
Phys. Rev. Lett.
,
80
(
6
), pp.
1208
1211
.
6.
Kafesaki
,
M.
,
Sigalas
,
M. M.
, and
Economou
,
E. N.
,
1995
, “
Elastic-Wave Band-Gaps in 3-D Periodic Polymer Matrix Composites
,”
Solid State Commun.
,
96
(
5
), pp.
285
289
.
7.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafarirouhani
,
B.
,
1995
, “
Acoustic Band-Structure of Periodic Elastic Composites-Reply
,”
Phys. Rev. Lett.
,
75
(
19
), pp.
3581
3581
.
8.
Chen
,
Y. Y.
,
Barnhart
,
M. V.
,
Chen
,
J. K.
,
Hu
,
G. K.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2016
, “
Dissipative Elastic Metamaterials for Broadband Wave Mitigation at Subwavelength Scale
,”
Compos. Struct.
,
136
, pp.
358
371
.
9.
Huang
,
H. H.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2009
, “
On the Negative Effective Mass Density in Acoustic Metamaterials
,”
Int. J. Eng. Sci.
,
47
(
4
), pp.
610
617
.
10.
Mitchell
,
S. J.
,
Pandolfi
,
A.
, and
Ortiz
,
M.
,
2016
, “
Effect of Brittle Fracture in a Metaconcrete Slab Under Shock Loading
,”
J. Eng. Mech.
,
142
(
4
), p. 04016010.
11.
Kinney
,
G. F.
,
1962
,
Explosive Shocks in Air
, MacMillan, London.
12.
Department, C. U. E.
,
2003
,
Materials Data Book
, Cambridge, UK.
13.
Kauthammer
,
T.
,
2008
,
Modern Protective Structures
, Vol. 22, CRC Press, Boca Raton, FL.
14.
Goffaux
,
C.
, and
Vigneron
,
J. P.
,
2001
, “
Theoretical Study of a Tunable Phononic Band Gap System
,”
Phys. Rev. B
,
64
(
7
), p. 075118.
You do not currently have access to this content.