A numerical 2D lattice approach with an erosion algorithm is employed to analyze bimaterial interface fracture quantities in brittle heterogeneous materials in the context of linear elastic fracture mechanics (LEFM). The concept of configurational force is elucidated and the importance of nodal configurational changes in a mesh where no stress–strain analyses are needed is investigated. Three fracture problems, i.e., an infinite panel with a bi-material interface crack, a double-lap shear test, and a prenotched four-point bending masonry beam are then considered. Validated by analytical solutions, the lattice model uses two distinct postprocessing approaches to derive the energy release rates and configurational forces directly at bimaterial interface crack tips. While the first method takes advantage of the change of the lattice mesh's global stiffness matrix before and after crack growth without any stress–strain calculations to obtain crack tip driving forces, the second approach analyzes the configurational forces opposing the crack tip motion using the Eshelby stress tensor and local force balance law in cracked and heterogeneous domains. It is demonstrated that the discrete material forces at crack tips are closely equal to the tip driving forces for the three fracture problems, confirming that the lattice is an appropriate numerical tool to analyze fracture properties of evolving interface cracks. Satisfying C1 continuity by including rotational displacements for frame struts, there is also no need for the lattice to update interior computational points in the mesh to eliminate spurious material forces away from the tip.

References

1.
Rice
,
J.
, and
Sih
,
G. C.
,
1965
, “
Plane Problems of Cracks in Dissimilar Media
,”
ASME J. Appl. Mech.
,
32
(
2
), pp.
418
423
.
2.
Hutchinson
,
J. W.
,
Mear
,
M.
, and
Rice
,
J. R.
,
1987
, “
Crack Paralleling an Interface Between Dissimilar Materials
,”
ASME J. Appl. Mech.
,
54
(
4
), pp.
828
832
.
3.
Rice
,
J.
,
1988
, “
Elastic Fracture Mechanics Concepts for Interfacial Cracks
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
98
103
.
4.
Evans
,
A.
,
Rühle
,
M.
,
Dalgleish
,
B.
, and
Charalambides
,
P.
,
1990
, “
The Fracture Energy of Bimaterial Interfaces
,”
Metall. Trans. A
,
21
(
9
), pp.
2419
2429
.
5.
Hutchinson
,
J. W.
, and
Suo
,
Z.
,
1991
, “
Mixed Mode Cracking in Layered Materials
,”
Adv. Appl. Mech.
,
29
, pp.
63
191
.
6.
Yau
,
J.
, and
Wang
,
S.
,
1984
, “
An Analysis of Interface Cracks Between Dissimilar Isotropic Materials Using Conservation Integrals in Elasticity
,”
Eng. Fract. Mech.
,
20
(
3
), pp.
423
432
.
7.
Charalambides
,
P.
,
Lund
,
J.
,
Evans
,
A.
, and
McMeeking
,
R.
,
1989
, “
A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
77
82
.
8.
Matos
,
P.
,
McMeeking
,
R.
,
Charalambides
,
P.
, and
Drory
,
M.
,
1989
, “
A Method for Calculating Stress Intensities in Bimaterial Fracture
,”
Int. J. Fract.
,
40
(
4
), pp.
235
254
.
9.
Parks
,
D. M.
,
1974
, “
A Stiffness Derivative Finite Element Technique for Determination of Crack Tip Stress Intensity Factors
,”
Int. J. Fract.
,
10
(
4
), pp.
487
502
.
10.
Belytschko
,
T.
, and
Black
,
T.
,
1999
, “
Elastic Crack Growth in Finite Elements With Minimal Remeshing
,”
Int. J. Numer. Methods Eng.
,
45
(
5
), pp.
601
620
.
11.
Dolbow
,
J.
, and
Belytschko
,
T.
,
1999
, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
,
46
(
1
), pp.
131
150
.
12.
Hrennikoff
,
A.
,
1941
, “
Solution of Problems of Elasticity by the Framework Method
,”
ASME J. Appl. Mech.
,
8
(
4
), pp.
169
175
.
13.
Herrmann
,
H. J.
,
1988
, “
Introduction to Modern Ideas on Tracture Patterns
,”
Random Fluctuations and Pattern Growth: Experiments and Models
,
Springer
,
Dordrecht, The Netherlands
, pp.
149
160
.
14.
De Borst
,
R.
, and
Mühlhaus
,
H.
,
1991
, “
Continuum Models for Discontinuous Media
,”
International RILEM/Conference
, E. S. I. S., Fracture Processes in Concrete, Rock and Ceramics, Noordwijk, The Netherlands, June 19–21, pp.
601
618
.
15.
Schlangen
,
E.
, and
Garboczi
,
E.
,
1996
, “
New Method for Simulating Fracture Using an Elastically Uniform Random Geometry Lattice
,”
Int. J. Eng. Sci.
,
34
(
10
), pp.
1131
1144
.
16.
Bolander
,
J. E.
, and
Saito
,
S.
,
1998
, “
Fracture Analyses Using Spring Networks With Random Geometry
,”
Eng. Fract. Mech.
,
61
(
5
), pp.
569
591
.
17.
Van Mier
,
J. G.
,
2012
Concrete Fracture: A Multiscale Approach
,
CRC Press
,
Boca Raton, FL
.
18.
Tankasala
,
H.
,
Deshpande
,
V.
, and
Fleck
,
N.
,
2013
, “
Koiter Medal Paper: Crack-Tip Fields and Toughness of Two-Dimensional Elastoplastic Lattices
,”
ASME J. Appl. Mech.
,
82
(
9
), p.
091004
.
19.
Schlangen
,
E.
, and
Van Mier
,
J.
,
1992
, “
Experimental and Numerical Analysis of Micromechanisms of Fracture of Cement-Based Composites
,”
Cem. Concr. Compos.
,
14
(
2
), pp.
105
118
.
20.
Mohammadipour
,
A.
, and
Willam
,
K.
,
2016
, “
Lattice Simulations for Evaluating Interface Fracture of Masonry Composites
,”
Theor. Appl. Fract. Mech.
,
82
, pp.
152
168
.
21.
Mohammadipour
,
A.
, and
Willam
,
K.
,
2016
, “
Lattice Approach in Continuum and Fracture Mechanics
,”
ASME J. Appl. Mech.
,
83
(
7
), p.
071003
.
22.
Mohammadipour
,
A.
,
2015
, “
Interface Fracture in Masonry Composites: A Lattice Approach
,” Ph.D. thesis, University of Houston, Houston, TX.
23.
Eshelby
,
J. D.
,
1951
, “
The Force on an Elastic Singularity
,”
Philos. Trans. R. Soc. London A
,
244
(
877
), pp.
87
112
.
24.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
.
25.
Eshelby
,
J.
,
1975
, “
The Elastic Energy-Momentum Tensor
,”
J. Elasticity
,
5
(
3–4
) pp.
321
335
.
26.
Mohammadipour
,
A.
,
Willam
,
K.
, and
Ayoub
,
A.
,
2013
, “
Experimental Studies of Brick and Mortar Composites Using Digital Image Analysis
,” 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures,
FraMCoS-8
, Toledo, Spain, pp. 172–181.
27.
Willam
,
K.
,
Mohammadipour
,
A.
,
Mousavi
,
R.
, and
Ayoub
,
A. S.
,
2013
, “
Failure of Unreinforced Masonry Under Compression
,”
Structures Congress
, pp.
2949
2961
.
28.
Champiri
,
M. D.
,
Mousavizadegan
,
S. H.
, and
Moodi
,
F.
,
2012
, “
A Decision Support System for Diagnosis of Distress Cause and Repair in Marine Concrete Structures
,”
Comput. Concr.
,
9
(
2
), pp.
99
118
.
29.
Champiri
,
M. D.
,
Sajjadi
,
S.
,
Mousavizadegan
,
S. H.
, and
Moodi
,
F.
,
2016
, “
Assessing Distress Cause and Estimating Evaluation Index for Marine Concrete Structures
,”
Am. J. Civ. Eng. Arch.
,
4
(
4
), pp.
142
152
.
30.
Beizaee
,
S.
,
Willam
,
K. J.
,
Xotta
,
G.
, and
Mousavi
,
R.
,
2016
, “
Error Analysis of Displacement Gradients Via Finite Element Approximation of Digital Image Correlation System
,”
9th International Conference on Fracture Mechanics of Concrete and Concrete Structures
,
FraMCoS-9
, 9.
31.
Mohammadipour
,
A.
, and
Willam
,
K.
,
2016
, “
The Homogenization of a Masonry Unit Cell Using a Lattice Approach: Uniaxial Tension Case
,”
9th International Conference on Fracture Mechanics of Concrete and Concrete Structures
,
FraMCoS-9
,
9
.
32.
Irwin
,
G.
,
1956
, “
Onset of Fast Crack Propagation in High Strength Steel and Aluminum Alloys
,”
Sagamore Research Conference Proceedings
, pp.
289
305
.
33.
Gurtin
,
M. E.
,
2000
,
Configurational Forces as Basic Concepts of Continuum Physics
, Vol.
137
,
Springer Science & Business Media
, New York.
34.
Kienzler
,
R.
, and
Herrmann
,
G.
,
2012
,
Mechanics in Material Space: With Applications to Defect and Fracture Mechanics
,
Springer Science & Business Media
, Berlin.
35.
Maugin
,
G. A.
,
1993
,
Material Inhomogeneities in Elasticity
, Chapman & Hall, London.
36.
Eshelby
,
J.
,
1999
, “
Energy Relations and the Energy-Momentum Tensor in Continuum Mechanics
,”
Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids
,
Springer
, Berlin, pp.
82
119
.
37.
Maugin
,
G. A.
,
2011
,
Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics
,
CRC Press
, Boca Raton, FL.
38.
Gurtin
,
M. E.
,
1995
, “
The Nature of Configurational Forces
,”
Arch. Ration. Mech. Anal.
,
131
(
1
), pp.
67
100
.
39.
Mueller
,
R.
, and
Maugin
,
G.
,
2002
, “
On Material Forces and Finite Element Discretizations
,”
Comput. Mech.
,
29
(
1
), pp.
52
60
.
40.
Mueller
,
R.
,
Gross
,
D.
, and
Maugin
,
G.
,
2004
, “
Use of Material Forces in Adaptive Finite Element Methods
,”
Comput. Mech.
,
33
(
6
), pp.
421
434
.
41.
Steinmann
,
P.
,
Scherer
,
M.
, and
Denzer
,
R.
,
2009
, “
Secret and Joy of Configurational Mechanics: From Foundations in Continuum Mechanics to Applications in Computational Mechanics
,”
ZAMM-J. Appl. Math. Mech.
,
89
(
8
), pp.
614
630
.
42.
Cosserat
,
E.
, and
Cosserat
,
F.
,
1909
,
Théorie des Corps Déformables
, Vol.
3
,
Cornell University Library
,
Paris, France
, pp.
17
29
.
43.
Eringen
,
A. C.
,
1965
, “
Linear Theory of Micropolar Elasticity
,” DTIC Document,
Technical Report No. 29
.
44.
Eringen
,
A.
,
1967
, “
Theory of Micropolar Elasticity
,” DTIC Document, Technical Report No. 1.
45.
Cowin
,
S.
,
1970
, “
Stress Functions for Cosserat Elasticity
,”
Int. J. Solids Struct.
,
6
(
4
), pp.
389
398
.
46.
Huang
,
F.-Y.
,
Yan
,
B.-H.
, and
Yang
,
D.-U.
,
2002
, “
The Effects of Material Constants on the Micropolar Elastic Honeycomb Structure With Negative Poisson's Ratio Using the Finite Element Method
,”
Eng. Comput.
,
19
(
7
), pp.
742
763
.
You do not currently have access to this content.