Soft materials including elastomers and gels are widely used in applications of energy absorption, soft robotics, bioengineering, and medical instruments. For many soft materials subject to loading and unloading cycles, the stress required on reloading is often less than that on the initial loading, known as Mullins effect. Meanwhile, soft materials usually exhibit rate-dependent viscous behavior. Both effects were recently reported on a new kind of synthesized tough gel, with capability of large deformation, high strength, and extremely high toughness. In this work, we develop a coupled viscoelastic and Mullins-effect model to characterize the deformation behavior of the tough gel. We modify one of the elastic components in Zener model to be a damageable spring to incorporate the Mullins effect and model the viscous effect to behave as a Newtonian fluid. We synthesized the tough gel described in the literature (Sun et al., Nature 2012) and conducted uniaxial tensile tests and stress relaxation tests. We also investigated the two effects on three other soft materials, polyacrylate elastomer, Nitrile-Butadiene Rubber, and polyurethane. We find that our presented model is so robust that it can characterize all the four materials, with modulus ranging from a few tens of kilopascal to megapascal. The theory and experiment for all tested materials agree very well.

References

References
1.
Mullins
,
L.
, and
Tobin
,
N.
,
1957
, “
Theoretical Model for the Elastic Behavior of Filler-Reinforced Vulcanized Rubbers
,”
Rubber Chem. Technol.
,
30
(
2
), pp.
555
571
.
2.
Mullins
,
L.
, and
Tobin
,
N.
,
1965
, “
Stress Softening in Rubber Vulcanizates—Part I: Use of a Strain Amplification Factor to Describe the Elastic Behavior of Filler–Reinforced Vulcanized Rubber
,”
J. Appl. Polym. Sci.
,
9
(
9
), pp.
2993
3009
.
3.
Bhuiyan
,
A.
,
Okui
,
Y.
,
Mitamura
,
H.
, and
Imai
,
T.
,
2009
, “
A Rheology Model of High Damping Rubber Bearings for Seismic Analysis: Identification of Nonlinear Viscosity
,”
Int. J. Solids Struct.
,
46
(
7
), pp.
1778
1792
.
4.
Heinrich
,
G.
,
Klüppel
,
M.
, and
Vilgis
,
T. A.
,
2002
, “
Reinforcement of Elastomers
,”
Curr. Opin. Solid State Mater. Sci.
,
6
(
3
), pp.
195
203
.
5.
Tantayanon
,
S.
, and
Juikham
,
S.
,
2004
, “
Enhanced Toughening of Poly (Propylene) With Reclaimed‐Tire Rubber
,”
J. Appl. Polym. Sci.
,
91
(
1
), pp.
510
515
.
6.
Diani
,
J.
,
Fayolle
,
B.
, and
Gilormini
,
P.
,
2009
, “
A Review on the Mullins Effect
,”
Eur. Polym. J.
,
45
(
3
), pp.
601
612
.
7.
Johnson
,
M.
, and
Beatty
,
M.
,
1993
, “
The Mullins Effect in Uniaxial Extension and Its Influence on the Transverse Vibration of a Rubber String
,”
Continuum Mech. Thermodyn.
,
5
(
2
), pp.
83
115
.
8.
Johnson
,
M.
, and
Beatty
,
M.
,
1993
, “
A Constitutive Equation for the Mullins Effect in Stress Controlled Uniaxial Extension Experiments
,”
Continuum Mech. Thermodyn.
,
5
(
4
), pp.
301
318
.
9.
Beatty
,
M. F.
, and
Krishnaswamy
,
S.
,
2000
, “
A Theory of Stress-Softening in Incompressible Isotropic Materials
,”
J. Mech. Phys. Solids
,
48
(
9
), pp.
1931
1965
.
10.
Qi
,
H.
, and
Boyce
,
M.
,
2004
, “
Constitutive Model for Stretch-Induced Softening of the Stress–Stretch Behavior of Elastomeric Materials
,”
J. Mech. Phys. Solids
,
52
(
10
), pp.
2187
2205
.
11.
Blanchard
,
A.
, and
Parkinson
,
D.
,
1952
, “
Breakage of Carbon-Rubber Networks by Applied Stress
,”
Ind. Eng. Chem.
,
44
(
4
), pp.
799
812
.
12.
Bueche
,
F.
,
1960
, “
Molecular Basis for the Mullins Effect
,”
J. Appl. Polym. Sci.
,
4
(
10
), pp.
107
114
.
13.
Simo
,
J.
,
1987
, “
On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
60
(
2
), pp.
153
173
.
14.
Gong
,
J. P.
,
Katsuyama
,
Y.
,
Kurokawa
,
T.
, and
Osada
,
Y.
,
2003
, “
Double‐Network Hydrogels With Extremely High Mechanical Strength
,”
Adv. Mater.
,
15
(
14
), pp.
1155
1158
.
15.
Webber
,
R. E.
,
Creton
,
C.
,
Brown
,
H. R.
, and
Gong
,
J. P.
,
2007
, “
Large Strain Hysteresis and Mullins Effect of Tough Double-Network Hydrogels
,”
Macromolecules
,
40
(
8
), pp.
2919
2927
.
16.
Zhang
,
T.
,
Lin
,
S.
,
Yuk
,
H.
, and
Zhao
,
X.
,
2015
, “
Predicting Fracture Energies and Crack-Tip Fields of Soft Tough Materials
,”
Extreme Mech. Lett.
,
4
, pp.
1
8
.
17.
Zhao
,
X.
,
2014
, “
Multi-Scale Multi-Mechanism Design of Tough Hydrogels: Building Dissipation Into Stretchy Networks
,”
Soft Matter
,
10
(
5
), pp.
672
687
.
18.
Lee
,
K. Y.
, and
Mooney
,
D. J.
,
2001
, “
Hydrogels for Tissue Engineering
,”
Chem. Rev.
,
101
(
7
), pp.
1869
1880
.
19.
Hong
,
S.
,
Sycks
,
D.
,
Chan
,
H. F.
,
Lin
,
S.
,
Lopez
,
G. P.
,
Guilak
,
F.
,
Leong
,
K. W.
, and
Zhao
,
X.
,
2015
, “
3D Printing of Highly Stretchable and Tough Hydrogels Into Complex, Cellularized Structures
,”
Adv. Mater.
,
27
(
27
), pp.
4035
4040
.
20.
Sun
,
J.-Y.
,
Zhao
,
X.
,
Illeperuma
,
W. R.
,
Chaudhuri
,
O.
,
Oh
,
K. H.
,
Mooney
,
D. J.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2012
, “
Highly Stretchable and Tough Hydrogels
,”
Nature
,
489
(
7414
), pp.
133
136
.
21.
Gong
,
J. P.
,
2010
, “
Why are Double Network Hydrogels so Tough?
,”
Soft Matter
,
6
(
12
), pp.
2583
2590
.
22.
Nakajima
,
T.
,
Kurokawa
,
T.
,
Ahmed
,
S.
,
Wu
,
W.-L.
, and
Gong
,
J. P.
,
2013
, “
Characterization of Internal Fracture Process of Double Network Hydrogels Under Uniaxial Elongation
,”
Soft Matter
,
9
(
6
), pp.
1955
1966
.
23.
Tang
,
J.
,
Xu
,
G.
,
Sun
,
Y.
,
Pei
,
Y.
, and
Fang
,
D.
,
2014
, “
Dissipative Properties and Chain Evolution of Highly Strained Nanocomposite Hydrogel
,”
J. Appl. Phys.
,
116
(
24
), p.
244901
.
24.
Tang
,
J.
,
Chen
,
X.
,
Pei
,
Y.
, and
Fang
,
D.
,
2016
, “
Pseudoelasticity and Nonideal Mullins Effect of Nanocomposite Hydrogels
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111010
.
25.
Wang
,
X.
, and
Hong
,
W.
,
2011
, “
Pseudo-Elasticity of a Double Network Gel
,”
Soft Matter
,
7
(
18
), pp.
8576
8581
.
26.
Foo
,
C. C.
,
Cai
,
S.
,
Koh
,
S. J. A.
,
Bauer
,
S.
, and
Suo
,
Z.
,
2012
, “
Model of Dissipative Dielectric Elastomers
,”
J. Appl. Phys.
,
111
(
3
), p.
034102
.
27.
Karimi
,
A.
,
Navidbakhsh
,
M.
, and
Beigzadeh
,
B.
,
2014
, “
A Visco-Hyperelastic Constitutive Approach for Modeling Polyvinyl Alcohol Sponge
,”
Tissue Cell
,
46
(
1
), pp.
97
102
.
28.
Seitz
,
M. E.
,
Martina
,
D.
,
Baumberger
,
T.
,
Krishnan
,
V. R.
,
Hui
,
C.-Y.
, and
Shull
,
K. R.
,
2009
, “
Fracture and Large Strain Behavior of Self-Assembled Triblock Copolymer Gels
,”
Soft Matter
,
5
(
2
), pp.
447
456
.
29.
Long
,
R.
,
Mayumi
,
K.
,
Creton
,
C.
,
Narita
,
T.
, and
Hui
,
C.-Y.
,
2014
, “
Time Dependent Behavior of a Dual Cross-Link Self-Healing Gel: Theory and Experiments
,”
Macromolecules
,
47
(
20
), pp.
7243
7250
.
30.
Sasso
,
M.
,
Chiappini
,
G.
,
Rossi
,
M.
,
Cortese
,
L.
, and
Mancini
,
E.
,
2014
, “
Visco-Hyper-Pseudo-Elastic Characterization of a Fluoro-Silicone Rubber
,”
Exp. Mech.
,
54
(
3
), pp.
315
328
.
31.
Qi
,
H.
, and
Boyce
,
M.
,
2005
, “
Stress–Strain Behavior of Thermoplastic Polyurethanes
,”
Mech. Mater.
,
37
(
8
), pp.
817
839
.
32.
Tauheed
,
F.
, and
Sarangi
,
S.
,
2015
, “
Rheological Model for Stress-Softened Visco-Hyperelastic Materials
,”
Int. J. Damage Mech.
,
24
(
5
), pp.
728
749
.
33.
Ogden
,
R.
, and
Roxburgh
,
D.
,
1999
, “
A Pseudo–Elastic Model for the Mullins Effect in Filled Rubber
,”
Proc. R. Soc. London. A
, pp.
2861
2877
.
You do not currently have access to this content.