Microstructural mechanisms such as domain switching in ferroelectric ceramics dissipate energy, the nature, and extent of which are of significant interest for two reasons. First, dissipative internal processes lead to hysteretic behavior at the macroscale (e.g., the hysteresis of polarization versus electric field in ferroelectrics). Second, mechanisms of internal friction determine the viscoelastic behavior of the material under small-amplitude vibrations. Although experimental techniques and constitutive models exist for both phenomena, there is a strong disconnect and, in particular, no advantageous strategy to link both for improved physics-based kinetic models for multifunctional rheological materials. Here, we present a theoretical approach that relates inelastic constitutive models to frequency-dependent viscoelastic parameters by linearizing the kinetic relations for the internal variables. This enables us to gain qualitative and quantitative experimental validation of the kinetics of internal processes for both quasistatic microstructure evolution and high-frequency damping. We first present the simple example of the generalized Maxwell model and then proceed to the case of ferroelectric ceramics for which we predict the viscoelastic response during domain switching and compare to experimental data. This strategy identifies the relations between microstructural kinetics and viscoelastic properties. The approach is general in that it can be applied to other rheological materials with microstructure evolution.

References

1.
Lynch
,
C.
,
1996
, “
The Effect of Uniaxial Stress on the Electro-Mechanical Response of 8/65/35 PLZT
,”
Acta Mater.
,
44
(
10
), pp.
4137
4148
.
2.
Sandu
,
A.
,
Tsuchiya
,
K.
,
Yamamoto
,
S.
,
Todaka
,
Y.
, and
Umemoto
,
M.
,
2006
, “
Influence of Isothermal Ageing on Mechanical Behaviour in Ni-Rich Ti-Zr-Ni Shape Memory Alloy
,”
Scr. Mater.
,
55
(
12
), pp.
1079
1082
.
3.
Saxena
,
P.
,
Hossain
,
M.
, and
Steinmann
,
P.
,
2013
, “
A Theory of Finite Deformation Magneto-Viscoelasticity
,”
Int. J. Solids Struct.
,
50
(
24
), pp.
3886
3897
.
4.
Wojnar
,
C. S.
,
le Graverend
,
J.-B.
, and
Kochmann
,
D. M.
,
2014
, “
Broadband Control of the Viscoelasticity of Ferroelectrics Via Domain Switching
,”
Appl. Phys. Lett.
,
105
(
16
), p.
162912
.
5.
Uchino
,
K.
,
1997
,
Piezoelectric Actuators and Ultrasonic Motors
(Electronic Materials: Science & Technology),
Kluwer Academic Publishers
,
Norwell, MA
.
6.
Crawley
,
E. F.
, and
Deluis
,
J.
,
1987
, “
Use of Piezoelectric Actuators as Elements of Intelligent Structures
,”
AIAA J.
,
25
(
10
), pp.
1373
1385
.
7.
De Marqui
,
C.
, Jr.
,
Vieira
,
W. G. R.
,
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
, “
Modeling and Analysis of Piezoelectric Energy Harvesting From Aeroelastic Vibrations Using the Doublet-Lattice Method
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011003
.
8.
Bachmann
,
F.
,
de Oliveira
,
R.
,
Sigg
,
A.
,
Schnyder
,
V.
,
Delpero
,
T.
,
Jaehne
,
R.
,
Bergamini
,
A.
,
Michaud
,
V.
, and
Ermanni
,
P.
,
2012
, “
Passive Damping of Composite Blades Using Embedded Piezoelectric Modules or Shape Memory Alloy Wires: A Comparative Study
,”
Smart Mater. Struct.
,
21
(
7
), p.
075027
.
9.
Cross
,
C. J.
, and
Fleeter
,
S.
,
2002
, “
Shunted Piezoelectrics for Passive Control of Turbomachine Blading Flow-Induced Vibrations
,”
Smart Mater. Struct.
,
11
(
2
), p.
239
.
10.
Hagood
,
N.
, and
von Flotow
,
A.
,
1991
, “
Damping of Structural Vibrations With Piezoelectric Materials and Passive Electrical Networks
,”
J. Sound Vib.
,
146
(
2
), pp.
243
268
.
11.
Asare
,
T.
,
Poquette
,
B.
,
Schultz
,
J.
, and
Kampe
,
S.
,
2012
, “
Investigating the Vibration Damping Behavior of Barium Titanate BaTiO3 Ceramics for Use as a High Damping Reinforcement in Metal Matrix Composites
,”
J. Mater. Sci.
,
47
(
6
), pp.
2573
2582
.
12.
Goff
,
A. C.
,
Aning
,
A. O.
, and
Kampe
,
S. L.
,
2004
, “
A Model to Predict the Damping Potential of Piezoelectric-Reinforced Metal Matrix Composites
,”
TMS Lett.
,
1
(
3
), pp.
59
60
.
13.
Zheng
,
L.
,
Zhang
,
D.
, and
Wang
,
Y.
,
2011
, “
Vibration and Damping Characteristics of Cylindrical Shells With Active Constrained Layer Damping Treatments
,”
Smart Mater. Struct.
,
20
(
2
), p.
025008
.
14.
Holland
,
R.
,
1967
, “
Representation of Dielectric, Elastic, and Piezoelectric Losses by Complex Coefficients
,”
IEEE Trans. Sonics Ultrason.
,
14
(
1
), pp.
18
20
.
15.
Herbiet
,
R.
,
Robels
,
U.
,
Dederichs
,
H.
, and
Arlt
,
G.
,
1989
, “
Domain Wall and Volume Contributions to Material Properties of PZT Ceramics
,”
Ferroelectrics
,
98
(
1
), pp.
107
121
.
16.
Robels
,
U.
,
Herbiet
,
R.
, and
Arlt
,
G.
,
1989
, “
Coupled Losses in PZT Near the Morphotropic Phase Boundary
,”
Ferroelectrics
,
93
(
1
), pp.
95
103
.
17.
le Graverend
,
J.-B.
,
Wojnar
,
C.
, and
Kochmann
,
D.
,
2015
, “
Broadband Electromechanical Spectroscopy: Characterizing the Dynamic Mechanical Response of Viscoelastic Materials Under Temperature and Electric Field Control in a Vacuum Environment
,”
J. Mater. Sci.
,
50
(
10
), pp.
3656
3685
.
18.
Chaplya
,
P. M.
, and
Carman
,
G. P.
,
2002
, “
Compression of Piezoelectric Ceramic at Constant Electric Field: Energy Absorption Through Non-180° Domain-Wall Motion
,”
J. Appl. Phys.
,
92
(
3
), pp.
1504
1510
.
19.
Jiménez
,
B.
, and
Vicente
,
J.
,
2000
, “
Influence of Mobile 90° Domains on the Complex Elastic Modulus of PZT Ceramics
,”
J. Phys. D Appl. Phys.
,
33
(
12
), p.
1525
.
20.
Kamiya
,
T.
,
Tsurumi
,
T.
,
Mishima
,
R.
,
Sakai
,
E.
, and
Daimon
,
M.
,
1997
, “
Frequency, Electric Field and Temperature Dependence of Piezoelectric Constant of Pb(Zr,Ti)O3 Based Ceramics Under High Electric Field
,”
Ferroelectrics
,
196
(
1
), pp.
277
280
.
21.
Yang
,
G.
,
Ren
,
W.
,
Liu
,
S.-F.
,
Masys
,
A.
, and
Mukherjee
,
B.
,
2000
, “
Effects of Uniaxial Stress and DC Bias Field on the Piezoelectric, Dielectric, and Elastic Properties of Piezoelectric Ceramics
,”
IEEE Symposium in Ultrasonics
, Vol.
2
, pp.
1005
1008
.
22.
Burlage
,
S.
,
1965
, “
The Dependence of Elastic Constants on Polarization in a Ferroelectric Ceramic
,”
IEEE Trans. Sonics Ultrason.
,
12
(
1
), pp.
5
8
.
23.
Ramesh
,
R.
,
1997
,
Thin Film Ferroelectric Materials and Devices
(Electronic Materials: Science & Technology),
Springer
,
New York
.
24.
Scott
,
J.
,
2000
,
Ferroelectric Memories, Advanced Microelectronics
,
Springer
,
New York
.
25.
Burcsu
,
E.
,
Ravichandran
,
G.
, and
Bhattacharya
,
K.
,
2004
, “
Large Electrostrictive Actuation of Barium Titanate Single Crystals
,”
J. Mech. Phys. Solids
,
52
(
4
), pp.
823
846
.
26.
Burcsu
,
E.
,
Ravichandran
,
G.
, and
Bhattacharya
,
K.
,
2000
, “
Large Strain Electrostrictive Actuation in Barium Titanate
,”
Appl. Phys. Lett.
,
77
(
11
), pp.
1698
1700
.
27.
Landau
,
L.
,
1937
, “
On the Theory of Phase Transitions (in Russian)
,”
Zh. Eksp. Teor. Fiz.
,
7
, pp.
19
32
.
28.
Devonshire
,
A. F.
,
1949
, “
XCVI. Theory of Barium Titanate
,”
Philos. Mag. Ser. 7
,
40
(
309
), pp.
1040
1063
.
29.
Devonshire
,
A. F.
,
1951
, “
Cix. Theory of Barium Titanate—Part II
,”
Philos. Mag. Ser. 7
,
42
(
333
), pp.
1065
1079
.
30.
Zhang
,
W.
, and
Bhattacharya
,
K.
,
2005
, “
A Computational Model of Ferroelectric Domains—Part I: Model Formulation and Domain Switching
,”
Acta Mater.
,
53
(
1
), pp.
185
198
.
31.
Zhang
,
W.
, and
Bhattacharya
,
K.
,
2005
, “
A Computational Model of Ferroelectric Domains—Part II: Grain Boundaries and Defect Pinning
,”
Acta Mater.
,
53
(
1
), pp.
199
209
.
32.
Su
,
Y.
, and
Landis
,
C. M.
,
2007
, “
Continuum Thermodynamics of Ferroelectric Domain Evolution: Theory, Finite Element Implementation, and Application to Domain Wall Pinning
,”
J. Mech. Phys. Solids
,
55
(
2
), pp.
280
305
.
33.
Chen
,
L. Q.
,
2008
, “
Phase-Field Method of Phase Transitions/Domain Structures in Ferroelectric Thin Films: A Review
,”
J. Am. Ceram. Soc.
,
91
(
6
), pp.
1835
1844
.
34.
Xu
,
B.-X.
,
Schrade
,
D.
,
Müller
,
R.
,
Gross
,
D.
,
Granzow
,
T.
, and
Rödel
,
J.
,
2010
, “
Phase Field Simulation and Experimental Investigation of the Electro-Mechanical Behavior of Ferroelectrics
,”
ZAMM—J. Appl. Math. Mech.
,
90
(
7–8
), pp.
623
632
.
35.
Miller
,
R. C.
,
1958
, “
Some Experiments on the Motion of 180° Domain Walls in BaTiO3
,”
Phys. Rev.
,
111
(
3
), pp.
736
739
.
36.
Miller
,
R. C.
, and
Savage
,
A.
,
1961
, “
Motion of 180° Domain Walls in BaTiO3 Under the Application of a Train of Voltage Pulses
,”
J. Appl. Phys.
,
32
(
4
), pp.
714
721
.
37.
Miller
,
R. C.
, and
Savage
,
A.
,
1960
, “
Motion of 180° Domain Walls in Metal Electroded Barium Titanate Crystals as a Function of Electric Field and Sample Thickness
,”
J. Appl. Phys.
,
31
(
4
), pp.
662
669
.
38.
Miller
,
R. C.
, and
Savage
,
A.
,
1959
, “
Direct Observation of Antiparallel Domains During Polarization Reversal in Single-Crystal Barium Titanate
,”
Phys. Rev. Lett.
,
2
(
7
), pp.
294
296
.
39.
Miller
,
R. C.
, and
Savage
,
A.
,
1959
, “
Further Experiments on the Sidewise Motion of 180° Domain Walls in BaTiO3
,”
Phys. Rev.
,
115
(
5
), pp.
1176
1180
.
40.
Miller
,
R. C.
, and
Savage
,
A.
,
1958
, “
Velocity of Sidewise 180° Domain-Wall Motion in BaTiO3 as a Function of the Applied Electric Field
,”
Phys. Rev.
,
112
(
3
), p.
755
.
41.
Savage
,
A.
, and
Miller
,
R. C.
,
1960
, “
Temperature Dependence of the Velocity of Sidewise 180° Domain-Wall Motion in BaTiO3
,”
J. Appl. Phys.
,
31
(
9
), pp.
1546
1549
.
42.
Shu
,
Y. C.
, and
Bhattacharya
,
K.
,
2001
, “
Domain Patterns and Macroscopic Behaviour of Ferroelectric Materials
,”
Philos. Mag. Part B
,
81
(
12
), pp.
2021
2054
.
43.
Kinderlehrer
,
D.
,
1987
, “
Twinning of Crystals (ii)
,”
Metastability and Incompletely Posed Problems
,
S.
Antman
,
J.
Ericksen
,
D.
Kinderlehrer
, and
I.
Müller
, eds., Vol.
3
, The IMA Volumes in Mathematics and Its Applications,
Springer
,
New York
, pp.
185
211
.
44.
Arlt
,
G.
,
1996
, “
A Physical Model for Hysteresis Curves of Ferroelectric Ceramics
,”
Ferroelectrics
,
189
(
1
), pp.
103
119
.
45.
Pasco
,
Y.
, and
Berry
,
A.
,
2004
, “
A Hybrid Analytical/Numerical Model of Piezoelectric Stack Actuators Using a Macroscopic Nonlinear Theory of Ferroelectricity and a Preisach Model of Hysteresis
,”
J. Intell. Mater. Syst. Struct.
,
15
(
5
), pp.
375
386
.
46.
Cocks
,
A. C. F.
, and
McMeeking
,
R. M.
,
1999
, “
A Phenomenological Constitutive Law for the Behaviour of Ferroelectric Ceramics
,”
Ferroelectrics
,
228
(
1
), pp.
219
228
.
47.
Yu
,
Y.
,
Naganathan
,
N.
, and
Dukkipati
,
R.
,
2002
, “
Preisach Modeling of Hysteresis for Piezoceramic Actuator System
,”
Mech. Mach. Theory
,
37
(
1
), pp.
49
59
.
48.
Landis
,
C. M.
,
2002
, “
Fully Coupled, Multi-Axial, Symmetric Constitutive Laws for Polycrystalline Ferroelectric Ceramics
,”
J. Mech. Phys. Solids
,
50
(
1
), pp.
127
152
.
49.
Ooi
,
P.-C.
,
Ishibashi
,
Y.
,
Lim
,
S.-C.
, and
Osman
,
J.
,
2007
, “
Numerical Investigation of Polarization Reversal Characteristics in a Ferroelectric Thin Film
,”
Ferroelectrics
,
355
(
1
), pp.
216
222
.
50.
Bassiouny
,
E.
,
Ghaleb
,
A. F.
, and
Maugin
,
G. A.
,
1988
, “
Thermodynamical Formulation for Coupled Electromechanical Hysteresis Effects—I: Basic Equations
,”
Int. J. Eng. Sci.
,
26
(
12
), pp.
1279
1295
.
51.
Bassiouny
,
E.
,
Ghaleb
,
A. F.
, and
Maugin
,
G. A.
,
1988
, “
Thermodynamical Formulation for Coupled Electromechanical Hysteresis Effects—II: Poling of Ceramics
,”
Int. J. Eng. Sci.
,
26
(
12
), pp.
1297
1306
.
52.
Bassiouny
,
E.
, and
Maugin
,
G. A.
,
1989
, “
Thermodynamical Formulation for Coupled Electromechanical Hysteresis Effects—IV: Combined Electromechanical Loading
,”
Int. J. Eng. Sci.
,
27
(
8
), pp.
989
1000
.
53.
Hwang
,
S. C.
,
Huber
,
J. E.
,
McMeeking
,
R. M.
, and
Fleck
,
N. A.
,
1998
, “
The Simulation of Switching in Polycrystalline Ferroelectric Ceramics
,”
J. Appl. Phys.
,
84
(
3
), pp.
1530
1540
.
54.
Arockiarajan
,
A.
,
Menzel
,
A.
,
Delibas
,
B.
, and
Seemann
,
W.
,
2006
, “
Computational Modeling of Rate-Dependent Domain Switching in Piezoelectric Materials
,”
Eur. J. Mech.—A/Solids
,
25
(
6
), pp.
950
964
.
55.
Miehe
,
C.
, and
Rosato
,
D.
,
2011
, “
A Rate-Dependent Incremental Variational Formulation of Ferroelectricity
,”
Int. J. Eng. Sci.
,
49
(
6
), pp.
466
496
.
56.
Kim
,
S.-J.
,
2011
, “
A Constitutive Model for Thermo-Electro-Mechanical Behavior of Ferroelectric Polycrystals Near Room Temperature
,”
Int. J. Solids Struct.
,
48
(
9
), pp.
1318
1329
.
57.
Kamlah
,
M.
,
2001
, “
Ferroelectric and Ferroelastic Piezoceramics—Modeling of Electromechanical Hysteresis Phenomena
,”
Continuum Mech. Thermodyn.
,
13
(
4
), pp.
219
268
.
58.
Landis
,
C. M.
,
2004
, “
Non-Linear Constitutive Modeling of Ferroelectrics
,”
Curr. Opin. Solid State Mater. Sci.
,
8
(
1
), pp.
59
69
.
59.
Cochran
,
W.
,
1959
, “
Crystal Stability and the Theory of Ferroelectricity
,”
Phys. Rev. Lett.
,
3
(
9
), pp.
412
414
.
60.
Cochran
,
W.
,
1961
, “
Crystal Stability and the Theory of Ferroelectricity—Part II: Piezoelectric Crystals
,”
Adv. Phys.
,
10
(
40
), pp.
401
420
.
61.
Zhang
,
Q.
,
2004
, “
Atomistic Simulations of Barium Titanate
,”
Ph.D. thesis
, California Institute of Technology, Pasadena, CA.
62.
Brodt
,
M.
,
Cook
,
L. S.
, and
Lakes
,
R. S.
,
1995
, “
Apparatus for Measuring Viscoelastic Properties Over Ten Decades: Refinements
,”
Rev. Sci. Instrum.
,
66
(
11
), pp.
5292
5297
.
63.
Lakes
,
R. S.
,
2004
, “
Viscoelastic Measurement Techniques
,”
Rev. Sci. Instrum.
,
75
(
4
), pp.
797
810
.
64.
Coleman
,
B.
, and
Noll
,
W.
,
1963
, “
The Thermodynamics of Elastic Materials With Heat Conduction and Viscosity
,”
Arch. Ration. Mech. Anal.
,
13
(
1
), pp.
167
178
.
65.
Bradford
,
S. C.
,
Hofmann
,
D. C.
,
Roberts
,
S. N.
,
Steeves
,
J. B.
,
Wojnar
,
C. S.
, and
Kochmann
,
D. M.
,
2016
, “
Energy-Efficient Active Reflectors With Improved Mechanical Stability and Improved Thermal Performance
,” 3rd
AIAA
Spacecraft Structures Conference
,
San Diego, CA
, Jan. 4–8, Paper No. 2016-0702.
66.
Ortiz
,
M.
, and
Stainier
,
L.
,
1999
, “
The Variational Formulation of Viscoplastic Constitutive Updates
,”
Comput. Methods Appl. Mech. Eng.
,
171
(
3–4
), pp.
419
444
.
67.
Groot
,
S. R.
,
1951
,
Thermodynamics of Irreversible Processes
,
North-Holland
,
Amsterdam, The Netherlands
.
68.
Lakes
,
R.
,
1999
,
Viscoelastic Solids
(CRC Mechanical Engineering Series),
CRC Press
,
Boca Raton, FL
.
69.
Christensen
,
R. M.
,
2003
,
Theory of Viscoelasticity
, 2nd ed.,
Dover Publications
,
Mineola, NY
.
70.
Idiart
,
M. I.
,
2014
, “
Modeling Two-Phase Ferroelectric Composites by Sequential Laminates
,”
Model. Simul. Mater. Sci. Eng.
,
22
(
2
), p.
025010
.
71.
Kruger
,
G.
,
1976
, “
Domain Wall Motion Concept to Describe Ferroelectric Rhombohedral PLZT Ceramics
,”
Ferroelectrics
,
11
(
1
), pp.
417
422
.
72.
Schmidt
,
N. A.
,
1981
, “
Coercive Force and 90° Domain Wall Motion in Ferroelectric PLZT Ceramics With Square Hysteresis Loops
,”
Ferroelectrics
,
31
(
1
), pp.
105
111
.
73.
Ishibashi
,
Y.
,
1989
, “
Phenomenological Theory of Domain Walls
,”
Ferroelectrics
,
98
(
1
), pp.
193
205
.
74.
Ishibashi
,
Y.
,
1990
, “
Structure and Physical Properties of Domain Walls
,”
Ferroelectrics
,
104
(
1
), pp.
299
310
.
75.
Viehland
,
D.
, and
Chen
,
Y.-H.
,
2000
, “
Random-Field Model for Ferroelectric Domain Dynamics and Polarization Reversal
,”
J. Appl. Phys.
,
88
(
11
), pp.
6696
6707
.
76.
Ishibashi
,
Y.
, and
Salje
,
E.
,
2004
, “
Theoretical Consideration on the 90° Domain Walls in Tetragonal Ferroelectrics
,”
Ferroelectrics
,
303
(
1
), pp.
9
13
.
77.
Song
,
T. K.
, and
Yang
,
S. M.
,
2009
, “
Phenomenological Calculation of the Domain-Size-Dependent Ferroelectric Domain-Wall Velocity
,”
J. Korean Phys. Soc.
,
55
(
2
), pp.
618
621
.
78.
Kliem
,
H.
, and
Kuehn
,
M.
,
2011
, “
Modeling the Switching Kinetics in Ferroelectrics
,”
J. Appl. Phys.
,
110
(
11
), p.
114106
.
79.
Genenko
,
Y. A.
,
Wehner
,
J.
, and
von Seggern
,
H.
,
2013
, “
Self-Consistent Model of Polarization Switching Kinetics in Disordered Ferroelectrics
,”
J. Appl. Phys.
,
114
(
8
), p.
084101
.
80.
Arlt
,
G.
,
Dederichs
,
H.
, and
Herbiet
,
R.
,
1987
, “
90°-Domain Wall Relaxation in Tetragonally Distorted Ferroelectric Ceramics
,”
Ferroelectrics
,
74
(
1
), pp.
37
53
.
81.
Gridnev
,
S. A.
,
2007
, “
Low-Frequency Shear Elasticity and Mechanical Losses in Ferroelastics
,”
Ferroelectrics
,
360
(
1
), pp.
1
24
.
82.
Devonshire
,
A.
,
1949
, “
XCVI. Theory of Barium Titanate
,”
Philos. Mag. Ser. 7
,
40
(
309
), pp.
1040
1063
.
83.
Zhou
,
D.
,
Kamlah
,
M.
, and
Munz
,
D.
,
2001
, “
Rate Dependence of Soft PZT Ceramics Under Electric Field Loading
,”
Proc SPIE
,
64
, pp.
64
70
.
84.
Uchino
,
K.
,
2003
, “
Introduction to Piezoelectric Actuators and Transducers
,” The Pennsylvania State University,
Technical Report. No. ADA429659
.
85.
Lynch
,
C. S.
,
1994
, “
Electro-Mechanical Coupling in 8/65/35 PLZT
,”
Proceedings of the Ninth IEEE International Symposium on Applications of Ferroelectrics
(
ISAF’94
), University Park, PA, Aug. 7–10, pp.
357
360
.
You do not currently have access to this content.