Optimization of material microstructure is strongly tied with the performance of composite materials at the macroscale and can be used to control desired macroscopic properties. In this paper, we study the optimal location of carbon black (CB) particle inclusions in a natural rubber (NR) matrix with the objective to maximize the rupture resistance of such polymer composites. Hyperelasticity is used to model the rubber matrix and stiff inclusions, and the phase field method is used to model the fracture accounting for large deformation kinematics. A genetic algorithm is employed to solve the inverse problem in which three parameters are proposed as optimization objective, including maximum peak force, maximum deformation at failure-point, and maximum fracture energy at failure-point. Two kinds of optimization variables, continuous and discrete variables, are adopted to describe the location of particles, and several numerical examples are carried out to provide insight into the optimal locations for different objectives.

References

1.
Soremekun
,
G.
,
Gurdal
,
Z.
,
Haftka
,
R. T.
, and
Waston
,
L. T.
,
2001
, “
Composite Laminate Design Optimization by Genetic Algorithm With Generalized Elitist Selection
,”
Comput. Struct.
,
79
(
2
), pp.
131
143
.
2.
Ho-Huu
,
V.
,
Do-Thi
,
T. D.
,
Dang-Trung
,
H.
,
Vo-Duy
,
T.
, and
Nguyen-Thoi
,
T.
,
2016
, “
Optimization of Laminated Composite Plates for Maximizing Buckling Load Using Improved Differential Evolution and Smoothed Finite Element Method
,”
Compos. Struct.
,
146
, pp.
132
147
.
3.
Almeida
,
F. S.
,
2016
, “
Stacking Sequence Optimization for Maximum Buckling Load of Composite Plates Using Harmony Search Algorithm
,”
Compos. Struct.
,
143
, pp.
287
299
.
4.
Nguyen
,
H. X.
,
Lee
,
J.
,
Vo
,
T. P.
, and
Lanc
,
D.
,
2016
, “
Vibration and Lateral Buckling Optimisation of Thin-Walled Laminated Composite Channel-Section Beams
,”
Compos. Struct.
,
143
, pp.
84
92
.
5.
Yan
,
X.
,
Huang
,
X.
,
Zha
,
Y.
, and
Xie
,
Y. M.
,
2014
, “
Concurrent Topology Optimization of Structures and Their Composite Microstructures
,”
Comput. Struct.
,
133
, pp.
103
110
.
6.
Coelho
,
P. G.
,
Guedes
,
J. M.
, and
Rodrigues
,
H. C.
,
2015
, “
Multiscale Topology Optimization of Bi-Material Laminated Composite Structures
,”
Compos. Struct.
,
132
, pp.
495
505
.
7.
Gu
,
G. X.
,
Dimas
,
L.
,
Qin
,
Z.
, and
Buehler
,
M. J.
,
2016
, “
Optimization of Composite Fracture Properties: Method, Validation, and Applications
,”
ASME J. Appl. Mech.
,
83
(7), pp.
1
7
.
8.
Hu
,
N.
, and
Fish
,
J.
,
2016
, “
Enhanced Ant Colony Optimization for Multiscale Problems
,”
Comput. Mech.
,
57
(
3
), pp.
447
463
.
9.
Prechtel
,
M.
,
Leugering
,
G.
,
Steinmann
,
P.
, and
Stingl
,
M.
,
2011
, “
Towards Optimization of Crack Resistance of Composite Materials by Adjustment of Fiber Shapes
,”
Eng. Fract. Mech.
,
78
(
6
), pp.
944
960
.
10.
Rouhi
,
M.
, and
Rais-Rohani
,
M.
,
2013
, “
Modeling and Probabilistic Design Optimization of a Nanofiber-Enhanced Composite Cylinder for Buckling
,”
Compos. Struct.
,
95
, pp.
346
353
.
11.
James
,
K. A.
, and
Waisman
,
H.
,
2014
, “
Failure Mitigation in Optimal Topology Design Using a Coupled Nonlinear Continuum Damage Model
,”
Comput. Methods Appl. Mech. Eng.
,
268
(
1
), pp.
614
631
.
12.
James
,
K. A.
, and
Waisman
,
H.
,
2015
, “
Topology Optimization of Structures Under Variable Loading Using a Damage Superposition Approach
,”
Int. J. Numer. Methods Eng.
,
101
(
5
), pp.
375
406
.
13.
Amir
,
O.
, and
Sigmund
,
O.
,
2013
, “
Reinforcement Layout Design for Concrete Structures Based on Continuum Damage and Truss Topology Optimization
,”
Struct. Multidiscip. Optim.
,
47
(
2
), pp.
157
174
.
14.
Sajjayanukul
,
T.
,
Saeoui
,
P.
, and
Sirisinha
,
C.
,
2005
, “
Experimental Analysis of Viscoelastic Properties in Carbon Black-Filled Natural Rubber Compounds
,”
J. Appl. Polym. Sci.
,
97
(
6
), pp.
2197
2203
.
15.
Teh
,
P.
,
Ishak
,
Z. M.
,
Hashim
,
A.
,
Karger-Kocsis
,
J.
, and
Ishiaku
,
U.
,
2004
, “
On the Potential of Organoclay With Respect to Conventional Fillers (Carbon Black, Silica) for Epoxidized Natural Rubber Compatibilized Natural Rubber Vulcanizates
,”
J. Appl. Polym. Sci.
,
94
(
6
), pp.
2438
2445
.
16.
Cam
,
J. B. L.
,
Huneau
,
B.
,
Verron
,
E.
, and
Gornet
,
L.
,
2004
, “
Mechanism of Fatigue Crack Growth in Carbon Black Filled Natural Rubber
,”
Macromolecules
,
37
(
13
), pp.
5011
5017
.
17.
Bazhenov
,
S.
,
Li
,
J.
,
Hiltner
,
A.
, and
Baer
,
E.
,
1994
, “
Ductility of Filled Polymers
,”
J. Appl. Polym. Sci.
,
52
(
2
), pp.
243
254
.
18.
Kastner
,
M.
,
Haasemann
,
G.
, and
Ulbricht
,
V.
,
2011
, “
Multiscale XFEM-Modelling and Simulation of the Inelastic Material Behaviour of Textile-Reinforced Polymers
,”
Int. J. Numer. Methods Eng.
,
86
(
4–5
), pp.
477
498
.
19.
Legrain
,
G.
,
Cartraud
,
P.
,
Perreard
,
I.
, and
Moës
,
N.
,
2011
, “
An X-FEM and Level Set Computational Approach for Image-Based Modelling: Application to Homogenization
,”
Int. J. Numer. Methods Eng.
,
86
(
7
), pp.
915
934
.
20.
Mikelic
,
A.
,
Wheeler
,
M. F.
, and
Wick
,
T.
,
2015
, “
A Quasi-Static Phase-Field Approach to Pressurized Fractures
,”
Nonlinearity
,
28
, pp.
1371
1399
.
21.
Borden
,
M. J.
,
Verhoosel
,
C. V.
,
Scott
,
M. A.
,
Hughes
,
T. J.
, and
Landis
,
C. M.
,
2012
, “
A Phase-Field Description of Dynamic Brittle Fracture
,”
Comput. Methods Appl. Mech. Eng.
,
217–220
, pp.
77
95
.
22.
McAuliffe
,
C.
, and
Waisman
,
H.
,
2015
, “
On the Importance of Nonlinear Elastic Effects in Shear Band Modeling
,”
Int. J. Plast.
,
71
, pp.
10
31
.
23.
McAuliffe
,
C.
, and
Waisman
,
H.
,
2015
, “
A Unified Model for Metal Failure Capturing Shear Banding and Fracture
,”
Int. J. Plast.
,
65
, pp.
131
151
.
24.
Schanzel
,
L.
,
Dal
,
H.
, and
Miehe
,
C.
,
2013
, “
Phase Field Modeling of Fracture in Rubbery Polymers
,”
Constitutive Models for Rubber VIII
,
Taylor & Francis Group
,
London
, pp.
335
341
.
25.
Wu
,
J.
,
McAuliffe
,
C.
,
Waisman
,
H.
, and
Deodatis
,
G.
, “
Stochastic Analysis of Polymer Composites Rupture at Large Deformations Modeled by a Phase Field Method
,”
Comput. Methods Appl. Mech. Eng.
(in press).
26.
Bourdin
,
B.
,
Francfort
,
G. A.
, and
Marigo
,
J. J.
,
2000
, “
Numerical Experiments in Revisited Brittle Fracture
,”
J. Mech. Phys. Solids
,
48
(
4
), pp.
797
826
.
27.
Francfort
,
G. A.
, and
Marigo
,
J. J.
,
1998
, “
Revisiting Brittle Fracture as an Energy Minimization Problem
,”
J. Mech. Phys. Solids
,
46
(
8
), pp.
1319
1342
.
28.
Miehe
,
C.
, and
Schanzel
,
L. M.
,
2014
, “
Phase Field Modeling of Fracture in Rubbery Polymers. Part I: Finite Elasticity Coupled With Brittle Failure
,”
J. Mech. Phys. Solids
,
65
, pp.
93
113
.
29.
Miehe
,
C.
,
Hofacker
,
M.
, and
Welschinger
,
F.
,
2010
, “
A Phase Field Model for Rate-Independent Crack Propagation: Robust Algorithmic Implementation Based on Operator Splits
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
45–48
), pp.
2765
2778
.
30.
Miehe
,
C.
,
Welschinger
,
F.
, and
Hofacker
,
M.
,
2010
, “
Thermodynamically Consistent Phase-Field Models of Fracture: Variational Principles and Multi-Field FE Implementations
,”
Int. J. Numer. Methods Eng.
,
83
(
10
), pp.
1273
1311
.
31.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
389
412
.
32.
Bower
,
A. F.
,
2009
,
Applied Mechanics of Solids
,
CRC Press
, Boca Raton, FL.
33.
Bourdin
,
B.
,
Francfort
,
G. A.
, and
Marigo
,
J. J.
,
2008
, “
The Variational Approach to Fracture
,”
J. Elasticity
,
91
(
1
), pp.
5
148
.
34.
Nguyen
,
T. T.
,
Yvonnet
,
J.
,
Zhu
,
Q. Z.
,
Bornert
,
M.
, and
Chateau
,
C.
,
2015
, “
A Phase Field Method to Simulate Crack Nucleation and Propagation in Strongly Heterogeneous Materials From Direct Imaging of Their Microstructure
,”
Eng. Fracture Mech.
,
139
, pp.
18
39
.
35.
Belytschko
,
T.
,
Liu
,
W. K.
,
Moran
,
B.
, and
Elkhodary
,
K.
,
2013
,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
, Hoboken, NJ.
36.
Ogden
,
R. W.
,
1997
,
Non-Linear Elastic Deformations
,
Courier Corporation
, North Chelmsford, MA.
37.
Hiermaier
,
S.
,
2007
,
Structures Under Crash and Impact: Continuum Mechanics, Discretization and Experimental Characterization
,
Springer Science and Business Media
, New York.
38.
Holland
,
J.
,
1992
,
Adaptation in Natural and Artificial Systems
,
MIT Press
, Cambridge, MA.
39.
Xinjie
,
Y.
, and
Mitsuo
,
G.
,
2010
,
Introduction to Evolutionary Algorithms
,
Springer
,
London
.
40.
Longhi
,
A. E. B.
,
Pessoa
,
A. A.
, and
Garcia
,
P. A. A.
,
2015
, “
Multiobjective Optimization of Strategies for Operation and Testing of Low-Demand Safety Instrumented Systems Using a Genetic Algorithm and Fault Trees
,”
Reliab. Eng. Syst. Saf.
,
142
, pp.
525
538
.
41.
Zhang
,
J. H.
, and
Zhou
,
Z. G.
,
2015
, “
An Improved Genetic Algorithm and Its Applications to the Optimisation Design of an Aspirated Compressor Profile
,”
Int. J. Numer. Methods Fluid
,
79
(
12
), pp.
640
653
.
42.
Gaffney
,
J.
,
Green
,
D. A.
, and
Pearce
,
C. E. M.
,
2010
, “
Binary Versus Real Coding for Genetic Algorithms: A False Dichotomy?
,”
ANZIAM J.
,
51
, pp.
C437
C359
.
43.
Liu
,
H.
, and
Ong
,
C.
,
2008
, “
Variable Selection in Clustering for Marketing Segmentation Using Genetic Algorithms
,”
Expert Syst. Appl.
,
34
(
1
), pp.
502
510
.
44.
Taylor
,
R. L.
,
2015
, “
FEAP–A Finite Element Analysis Program, Programmer Manual
,”
University of California
, Berkeley, CA.
45.
Geuzaine
,
C.
, and
Remacle
,
J. F.
, 2016, “
Gmsh Reference Manual
,”
Free Software Foundation, Inc.
, Boston, MA.
46.
Henderson
,
A.
,
2005
, “
Paraview Guide: A Parallel Visualization Application
,”
Kitware, Inc.
, Clifton Park, NY.
47.
Hunter
,
J. D.
,
2007
, “
Matplotlib: A 2D Graphics Environment
,”
Comput. Sci. Eng.
,
9
(
3
), pp.
90
95
.
You do not currently have access to this content.