Stretchable electronics have found wide applications in bio-mimetic and bio-integrated electronics attributing to their softness, stretchability, and conformability. Although conventional electronic materials are intrinsically stiff and brittle, silicon and metal membranes can be patterned into in-plane serpentine ribbons for enhanced stretchability and compliance. While freestanding thin serpentine ribbons may easily buckle out-of-plane, thick serpentine ribbons may remain unbuckled upon stretching. Curved beam (CB) theory has been applied to analytically solve the strain field and the stiffness of freestanding, nonbuckling serpentine ribbons. While being able to fully capture the strain and stiffness of narrow serpentines, the theory cannot provide accurate solutions to serpentine ribbons whose widths are comparable to the arc radius. Here we report elasticity solutions to accurately capture nonbuckling, wide serpentine ribbons. We have demonstrated that weak boundary conditions are sufficient for solving Airy stress functions except when the serpentine’s total curve length approaches the ribbon width. Slightly modified weak boundary conditions are proposed to resolve this difficulty. Final elasticity solutions are fully validated by finite element models (FEM) and are compared with results obtained by the curved beam theory. When the serpentine ribbons are embedded in polymer matrices, their stretchability may be compromised due to the fact that the matrix can constrain the in-plane rotation of the serpentine. Comparison between the analytical solutions for freestanding serpentines and the FEM solutions for matrix-embedded serpentines reveals that matrix constraint remains trivial until the matrix modulus approaches that of the serpentine ribbon.

References

References
1.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y. G.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
.
2.
Suo
,
Z. G.
,
2012
, “
Mechanics of Stretchable Electronics and Soft Machines
,”
MRS Bull.
,
37
(
3
), pp.
218
225
.
3.
Hammock
,
M. L.
,
Chortos
,
A.
,
Tee
,
B. C. K.
,
Tok
,
J. B. H.
, and
Bao
,
Z. A.
,
2013
, “
25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress
,”
Adv. Mater.
,
25
(
42
), pp.
5997
6037
.
4.
Song
,
Y. M.
,
Xie
,
Y. Z.
,
Malyarchuk
,
V.
,
Xiao
,
J. L.
,
Jung
,
I.
,
Choi
,
K. J.
,
Liu
,
Z. J.
,
Park
,
H.
,
Lu
,
C. F.
,
Kim
,
R. H.
,
Li
,
R.
,
Crozier
,
K. B.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2013
, “
Digital Cameras With Designs Inspired by the Arthropod Eye
,”
Nature
,
497
(
7447
), pp.
95
99
.
5.
Kim
,
D. H.
,
Lu
,
N. S.
,
Ma
,
R.
,
Kim
,
Y. S.
,
Kim
,
R. H.
,
Wang
,
S. D.
,
Wu
,
J.
,
Won
,
S. M.
,
Tao
,
H.
,
Islam
,
A.
,
Yu
,
K. J.
,
Kim
,
T. I.
,
Chowdhury
,
R.
,
Ying
,
M.
,
Xu
,
L. Z.
,
Li
,
M.
,
Chung
,
H. J.
,
Keum
,
H.
,
McCormick
,
M.
,
Liu
,
P.
,
Zhang
,
Y. W.
,
Omenetto
,
F. G.
,
Huang
,
Y. G.
,
Coleman
,
T.
, and
Rogers
,
J. A.
,
2011
, “
Epidermal Electronics
,”
Science
,
333
(
6044
), pp.
838
843
.
6.
Kang
,
S. K.
,
Murphy
,
R. K. J.
,
Hwang
,
S. W.
,
Lee
,
S. M.
,
Harburg
,
D. V.
,
Krueger
,
N. A.
,
Shin
,
J. H.
,
Gamble
,
P.
,
Cheng
,
H. Y.
,
Yu
,
S.
,
Liu
,
Z. J.
,
McCall
,
J. G.
,
Stephen
,
M.
,
Ying
,
H. Z.
,
Kim
,
J.
,
Park
,
G.
,
Webb
,
R. C.
,
Lee
,
C. H.
,
Chung
,
S. J.
,
Wie
,
D. S.
,
Gujar
,
A. D.
,
Vemulapalli
,
B.
,
Kim
,
A. H.
,
Lee
,
K. M.
,
Cheng
,
J. J.
,
Huang
,
Y. G.
,
Lee
,
S. H.
,
Braun
,
P. V.
,
Ray
,
W. Z.
, and
Rogers
,
J. A.
,
2016
, “
Bioresorbable Silicon Electronic Sensors for the Brain
,”
Nature
,
530
(
7588
), pp.
71
76
.
7.
Lipomi
,
D. J.
,
Tee
,
B. C. K.
,
Vosgueritchian
,
M.
, and
Bao
,
Z. N.
,
2011
, “
Stretchable Organic Solar Cells
,”
Adv. Mater
,
23
(
15
), pp.
1771
1775
.
8.
Xu
,
S.
,
Zhang
,
Y. H.
,
Cho
,
J.
,
Lee
,
J.
,
Huang
,
X.
,
Jia
,
L.
,
Fan
,
J. A.
,
Su
,
Y. W.
,
Su
,
J.
,
Zhang
,
H. G.
,
Cheng
,
H. Y.
,
Lu
,
B. W.
,
Yu
,
C. J.
,
Chuang
,
C.
,
Kim
,
T. I.
,
Song
,
T.
,
Shigeta
,
K.
,
Kang
,
S.
,
Dagdeviren
,
C.
,
Petrov
,
I.
,
Braun
,
P. V.
,
Huang
,
Y. G.
,
Paik
,
U.
, and
Rogers
,
J. A.
,
2013
, “
Stretchable Batteries With Self-Similar Serpentine Interconnects and Integrated Wireless Recharging Systems
,”
Nat. Commun.
,
4
, p.
1543
.
9.
Shield
,
T. W.
,
Kim
,
K. S.
, and
Shield
,
R. T.
,
1994
, “
The Buckling of an Elastic Layer Bonded to an Elastic Substrate in Plane-Strain
,”
ASME J. Appl. Mech.
,
61
(
2
), pp.
231
235
.
10.
Bowden
,
N.
,
Brittain
,
S.
,
Evans
,
A. G.
,
Hutchinson
,
J. W.
, and
Whitesides
,
G. M.
,
1998
, “
Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on an Elastomeric Polymer
,”
Nature
,
393
(
6681
), pp.
146
149
.
11.
Huang
,
R.
, and
Suo
,
Z.
,
2002
, “
Instability of a Compressed Elastic Film on a Viscous Layer
,”
Int. J. Solids Struct.
,
39
(
7
), pp.
1791
1802
.
12.
Lacour
,
S. P.
,
Wagner
,
S.
,
Huang
,
Z. Y.
, and
Suo
,
Z.
,
2003
, “
Stretchable Gold Conductors on Elastomeric Substrates
,”
Appl. Phys. Lett.
,
82
(
15
), pp.
2404
2406
.
13.
Khang
,
D. Y.
,
Jiang
,
H. Q.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2006
, “
A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates
,”
Science
,
311
(
5758
), pp.
208
212
.
14.
Qi
,
Y.
,
Kim
,
J.
,
Nguyen
,
T. D.
,
Lisko
,
B.
,
Purohit
,
P. K.
, and
McAlpine
,
M. C.
,
2011
, “
Enhanced Piezoelectricity and Stretchability in Energy Harvesting Devices Fabricated From Buckled PZT Ribbons
,”
Nano Lett.
,
11
(
3
), pp.
1331
1336
.
15.
Wang
,
Y.
,
Yang
,
R.
,
Shi
,
Z. W.
,
Zhang
,
L. C.
,
Shi
,
D. X.
,
Wang
,
E.
, and
Zhang
,
G. Y.
,
2011
, “
Super-Elastic Graphene Ripples for Flexible Strain Sensors
,”
ACS Nano
,
5
(
5
), pp.
3645
3650
.
16.
Gray
,
D. S.
,
Tien
,
J.
, and
Chen
,
C. S.
,
2004
, “
High-Conductivity Elastomeric Electronics
,”
Adv. Mater.
,
16
(
5
), pp.
393
397
.
17.
Li
,
T.
,
Suo
,
Z. G.
,
Lacour
,
S. P.
, and
Wagner
,
S.
,
2005
, “
Compliant Thin Film Patterns of Stiff Materials as Platforms for Stretchable Electronics
,”
J. Mater. Res.
,
20
(
12
), pp.
3274
3277
.
18.
Brosteaux
,
D.
,
Axisa
,
F.
,
Gonzalez
,
M.
, and
Vanfleteren
,
J.
,
2007
, “
Design and Fabrication of Elastic Interconnections for Stretchable Electronic Circuits
,”
IEEE Electron. Device Lett.
,
28
(
7
), pp.
552
554
.
19.
Kim
,
D. H.
,
Song
,
J. Z.
,
Choi
,
W. M.
,
Kim
,
H. S.
,
Kim
,
R. H.
,
Liu
,
Z. J.
,
Huang
,
Y. Y.
,
Hwang
,
K. C.
,
Zhang
,
Y. W.
, and
Rogers
,
J. A.
,
2008
, “
Materials and Noncoplanar Mesh Designs for Integrated Circuits With Linear Elastic Responses to Extreme Mechanical Deformations
,”
Proc. Natl. Acad. Sci. U.S.A.
,
105
(
48
), pp.
18675
18680
.
20.
Hsu
,
Y. Y.
,
Gonzalez
,
M.
,
Bossuyt
,
F.
,
Axisa
,
F.
,
Vanfleteren
,
J.
, and
De Wolf
,
I.
,
2009
, “
In Situ Observations on Deformation Behavior and Stretching-Induced Failure of Fine Pitch Stretchable Interconnect
,”
J. Mater. Res.
,
24
(
12
), pp.
3573
3582
.
21.
Kim
,
D. H.
,
Lu
,
N. S.
,
Ghaffari
,
R.
,
Kim
,
Y. S.
,
Lee
,
S. P.
,
Xu
,
L. Z.
,
Wu
,
J. A.
,
Kim
,
R. H.
,
Song
,
J. Z.
,
Liu
,
Z. J.
,
Viventi
,
J.
,
de Graff
,
B.
,
Elolampi
,
B.
,
Mansour
,
M.
,
Slepian
,
M. J.
,
Hwang
,
S.
,
Moss
,
J. D.
,
Won
,
S. M.
,
Huang
,
Y. G.
,
Litt
,
B.
, and
Rogers
,
J. A.
,
2011
, “
Materials for Multifunctional Balloon Catheters With Capabilities in Cardiac Electrophysiological Mapping and Ablation Therapy
,”
Nat. Mater.
,
10
(
4
), pp.
316
323
.
22.
Kim
,
R. H.
,
Bae
,
M. H.
,
Kim
,
D. G.
,
Cheng
,
H. Y.
,
Kim
,
B. H.
,
Kim
,
D. H.
,
Li
,
M.
,
Wu
,
J.
,
Du
,
F.
,
Kim
,
H. S.
,
Kim
,
S.
,
Estrada
,
D.
,
Hong
,
S. W.
,
Huang
,
Y. G.
,
Pop
,
E.
, and
Rogers
,
J. A.
,
2011
, “
Stretchable, Transparent Graphene Interconnects for Arrays of Microscale Inorganic Light Emitting Diodes on Rubber Substrates
,”
Nano Lett.
,
11
(
9
), pp.
3881
3886
.
23.
Ma
,
T.
,
Wang
,
Y.
,
Tang
,
R.
,
Yu
,
H.
, and
Jiang
,
H.
,
2013
, “
Pre-Patterned ZnO Nanoribbons on Soft Substrates for Stretchable Energy Harvesting Applications
,”
J. Appl. Phys.
,
113
(
20
), p.
204503
.
24.
Yang
,
S.
,
Ng
,
E.
, and
Lu
,
N.
,
2015
, “
Indium Tin Oxide (ITO) Serpentine Ribbons on Soft Substrates Stretched Beyond 100%
,”
Extreme Mech. Lett.
,
2
, pp.
37
45
.
25.
Lu
,
N. S.
,
Lu
,
C.
,
Yang
,
S. X.
, and
Rogers
,
J.
,
2012
, “
Highly Sensitive Skin-Mountable Strain Gauges Based Entirely on Elastomers
,”
Adv. Funct. Mater.
,
22
(
19
), pp.
4044
4050
.
26.
Fan
,
J. A.
,
Yeo
,
W. H.
,
Su
,
Y. W.
,
Hattori
,
Y.
,
Lee
,
W.
,
Jung
,
S. Y.
,
Zhang
,
Y. H.
,
Liu
,
Z. J.
,
Cheng
,
H. Y.
,
Falgout
,
L.
,
Bajema
,
M.
,
Coleman
,
T.
,
Gregoire
,
D.
,
Larsen
,
R. J.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2014
, “
Fractal Design Concepts for Stretchable Electronics
,”
Nat. Commun.
,
5
, p.
3266
.
27.
Zhang
,
Y.
,
Fu
,
H.
,
Xu
,
S.
,
Fan
,
J. A.
,
Hwang
,
K.-C.
,
Jiang
,
J.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2014
, “
A Hierarchical Computational Model for Stretchable Interconnects With Fractal-Inspired Designs
,”
J. Mech. Phys. Solids
,
72
, pp.
115
130
.
28.
Son
,
D.
,
Lee
,
J.
,
Lee
,
D. J.
,
Ghaffari
,
R.
,
Yun
,
S.
,
Kim
,
S. J.
,
Lee
,
J. E.
,
Cho
,
H. R.
,
Yoon
,
S.
,
Yang
,
S. X.
,
Lee
,
S.
,
Qiao
,
S. T.
,
Ling
,
D. S.
,
Shin
,
S.
,
Song
,
J. K.
,
Kim
,
J.
,
Kim
,
T.
,
Lee
,
H.
,
Kim
,
J.
,
Soh
,
M.
,
Lee
,
N.
,
Hwang
,
C. S.
,
Nam
,
S.
,
Lu
,
N. S.
,
Hyeon
,
T.
,
Choi
,
S. H.
, and
Kim
,
D. H.
,
2015
, “
Bioresorbable Electronic Stent Integrated With Therapeutic Nanoparticles for Endovascular Diseases
,”
ACS Nano
,
9
(
6
), pp.
5937
5946
.
29.
Lanzara
,
G.
,
Salowitz
,
N.
,
Guo
,
Z. Q.
, and
Chang
,
F. K.
,
2010
, “
A Spider-Web-Like Highly Expandable Sensor Network for Multifunctional Materials
,”
Adv. Mater.
,
22
(
41
), pp.
4643
4648
.
30.
Liu
,
L.
, and
Lu
,
N.
,
2016
, “
Variational Formulations, Instabilities and Critical Loadings of Space Curved Beams
,”
Int. J. Solids Struct.
,
87
, pp.
48
60
.
31.
Zhang
,
Y. H.
,
Xu
,
S.
,
Fu
,
H. R.
,
Lee
,
J.
,
Su
,
J.
,
Hwang
,
K. C.
,
Rogers
,
J. A.
, and
Huang
,
Y. G.
,
2013
, “
Buckling in Serpentine Microstructures and Applications in Elastomer-Supported Ultra-Stretchable Electronics With High Areal Coverage
,”
Soft Matter
,
9
(
33
), pp.
8062
8070
.
32.
Fan
,
Z. C.
,
Zhang
,
Y. H.
,
Ma
,
Q.
,
Zhang
,
F.
,
Fu
,
H. R.
,
Hwang
,
K. C.
, and
Huang
,
Y. G.
,
2016
, “
A Finite Deformation Model of Planar Serpentine Interconnects for Stretchable Electronics
,”
Int. J. Solids Struct.
,
91
, pp.
46
54
.
33.
Zhang
,
Y.
,
Fu
,
H.
,
Su
,
Y.
,
Xu
,
S.
,
Cheng
,
H.
,
Fan
,
J. A.
,
Hwang
,
K.-C.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2013
, “
Mechanics of Ultra-Stretchable Self-Similar Serpentine Interconnects
,”
Acta Mater.
,
61
(
20
), pp.
7816
7827
.
34.
Su
,
Y.
,
Wang
,
S.
,
Huang
,
Y.
,
Luan
,
H.
,
Dong
,
W.
,
Fan
,
J. A.
,
Yang
,
Q.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2015
, “
Elasticity of Fractal Inspired Interconnects
,”
Small
,
11
(
3
), pp.
367
373
.
35.
Hsu
,
Y. Y.
,
Gonzalez
,
M.
,
Bossuyt
,
F.
,
Axisa
,
F.
,
Vanfleteren
,
J.
, and
DeWolf
,
I.
,
2010
, “
The Effect of Pitch on Deformation Behavior and the Stretching-Induced Failure of a Polymer-Encapsulated Stretchable Circuit
,”
J. Micromech. Microeng.
,
20
(
7
), p.
075036
.
36.
Hsu
,
Y. Y.
,
Gonzalez
,
M.
,
Bossuyt
,
F.
,
Axisa
,
F.
,
Vanfleteren
,
J.
, and
De Wolf
,
I.
,
2011
, “
The Effects of Encapsulation on Deformation Behavior and Failure Mechanisms of Stretchable Interconnects
,”
Thin Solid Films
,
519
(
7
), pp.
2225
2234
.
37.
Hsu
,
Y. Y.
,
Gonzalez
,
M.
,
Bossuyt
,
F.
,
Vanfleteren
,
J.
, and
De Wolf
,
I.
,
2011
, “
Polyimide-Enhanced Stretchable Interconnects: Design, Fabrication, and Characterization
,”
IEEE Trans. Electron. Devices
,
58
(
8
), pp.
2680
2688
.
38.
Yang
,
S.
,
Su
,
B.
,
Bitar
,
G.
, and
Lu
,
N.
,
2014
, “
Stretchability of Indium Tin Oxide (ITO) Serpentine Thin Films Supported by Kapton Substrates
,”
Int. J. Fracture
,
190
(
1–2
), pp.
99
110
.
39.
Xu
,
R.
,
Jang
,
K.-I.
,
Ma
,
Y.
,
Jung
,
H. N.
,
Yang
,
Y.
,
Cho
,
M.
,
Zhang
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2014
, “
Fabric-Based Stretchable Electronics With Mechanically Optimized Designs and Prestrained Composite Substrates
,”
Extreme Mech. Lett.
,
1
, pp.
120
126
.
40.
Widlund
,
T.
,
Yang
,
S. X.
,
Hsu
,
Y. Y.
, and
Lu
,
N. S.
,
2014
, “
Stretchability and Compliance of Freestanding Serpentine-Shaped Ribbons
,”
Int. J. Solids Struct.
,
51
(
23–24
), pp.
4026
4037
.
41.
Bandodkar
,
A. J.
,
Jeerapan
,
I.
,
You
,
J. M.
,
Nunez-Flores
,
R.
, and
Wang
,
J.
,
2016
, “
Highly Stretchable Fully-Printed CNT-Based Electrochemical Sensors and Biofuel Cells: Combining Intrinsic and Design-Induced Stretchability
,”
Nano Lett.
,
16
(
1
), pp.
721
727
.
42.
Yang
,
S.
,
Chen
,
Y. C.
,
Nicolini
,
L.
,
Pasupathy
,
P.
,
Sacks
,
J.
,
Becky
,
S.
,
Yang
,
R.
,
Daniel
,
S.
,
Chang
,
Y. F.
,
Wang
,
P.
,
Schnyer
,
D.
,
Neikirk
,
D.
, and
Lu
,
N.
,
2015
, “
“Cut-and-Paste” Manufacture of Multiparametric Epidermal Sensor Systems
,”
Adv. Mater.
,
27
(
41
), pp.
6423
6430
.
You do not currently have access to this content.