This paper illustrates the effectiveness of a functionally graded core in preventing wrinkling in sandwich structures. The problem is solved for piecewise and continuous through-the-thickness core stiffness variations. The analysis is extended to account for the effect of temperature on wrinkling of a sandwich beam with a functionally graded core. The applicability of the developed theory is demonstrated for foam cores where the stiffness is an analytical function of the mass density. In this case, a desirable variation of the stiffness can be achieved by varying the mass density through the thickness of the core. Numerical examples demonstrate that wrinkling stability of a facing can significantly be increased using a piecewise graded core. The best results are achieved locating the layers with a higher mass density adjacent to the facing. A significant increase in the wrinkling stress can eliminate wrinkling as a possible mode of failure, without noticeably increasing the weight of the structure. In the case of a uniform temperature applied in addition to compression, wrinkling in a sandwich beam with a functionally graded core is affected both by its grading as well as by the effect of temperature on the facing and core properties. Although even a moderately elevated temperature may significantly lower the wrinkling stress, the advantage of a graded core over the homogeneous counterpart is conserved.

References

References
1.
Tuwair
,
H.
,
Volz
,
J.
,
ElGawady
,
M. A.
,
Chandrashekhara
,
K.
, and
Birman
,
V.
,
2016
, “
Modeling and Analysis of GFRP Bridge Deck Panels Filled With Polyurethane Foam
,”
J. Bridge Eng.
,
21
(
5
), p.
04016012
.
2.
Tuwair
,
H.
,
Volz
,
J.
,
Elgawady
,
M. A.
,
Mohamed
,
M.
,
Chandrashekhara
,
K.
, and
Birman
,
V.
,
2016
, “
Testing and Evaluation of Polyurethane-Based GFRP Sandwich Bridge Deck Panels With Polyurethane Foam Core
,”
J. Bridge Eng.
,
21
(
1
), p. 04015033.
3.
Frostig
,
Y.
,
2011
, “
On Wrinkling of a Sandwich Panel With a Compliant Core and Self-Equilibrated Loads
,”
J. Sandwich Struct. Mater.
,
13
(
6
), pp.
663
679
.
4.
Gough
,
G. S.
,
Elam
,
C. F.
, and
deBruyne
,
N. A.
,
1940
, “
The Stabilization of a Thin Sheet by a Continuous Support Medium
,”
J. R. Aeronaut. Soc.
,
44
(
349
), pp.
12
43
.
5.
Hoff
,
N. J.
, and
Mautner
,
S. E.
,
1945
, “
The Buckling of Sandwich-Type Panels
,”
J. Aeronaut. Sci.
,
12
(
3
), pp.
285
297
.
6.
Plantema
,
F. J.
,
1966
,
Sandwich Construction
,
Pergamon Press
,
New York
.
7.
Allen
,
H. G.
,
1969
,
Analysis and Design of Structural Sandwich Panels
,
Pergamon Press
,
Oxford
.
8.
Vonach
,
W. K.
, and
Rammerstorfer
,
F. G.
,
2001
, “
A General Approach to the Wrinkling Instability of Sandwich Plates
,”
Struct. Eng. Mech.
,
12
(
4
), pp.
363
376
.
9.
Vonach
,
W. K.
, and
Rammerstorfer
,
F. G.
,
2000
, “
Wrinkling of Thick Orthotropic Sandwich Plates Under General Loading Conditions
,”
Arch. Appl. Mech.
,
70
(
5
), pp.
338
348
.
10.
Vonach
,
W. K.
, and
Rammerstorfer
,
F. G.
,
2000
, “
Effects of In-Plane Core Stiffness on the Wrinkling Behavior of Thick Sandwiches
,”
Acta Mech.
,
141
(
1
), pp.
1
10
.
11.
Gdoutos
,
E. E.
,
Daniel
, I
. M.
, and
Wang
,
K. A.
,
2003
, “
Compression Facing Wrinkling of Composite Sandwich Structures
,”
Mech. Mater.
,
35
(
3–6
), pp.
511
522
.
12.
Kardomateas
,
G. A.
,
2005
, “
Wrinkling of Wide Sandwich Panels/Beams With Orthotropic Phases by an Elasticity Approach
,”
ASME J. Appl. Mech.
,
72
(
6
), pp.
818
825
.
13.
Birman
,
V.
, and
Bert
,
C. W.
,
2004
, “
Wrinkling of Composite-Facing Sandwich Panels Under Biaxial Loading
,”
J. Sandwich Struct. Mater.
,
6
(
3
), pp.
217
237
.
14.
Birman
,
V.
,
2004
, “
Thermomechanical Wrinkling in Composite Sandwich Structures
,”
AIAA J.
,
42
(
7
), pp.
1474
1479
.
15.
Birman
,
V.
,
2005
, “
Thermally Induced Bending and Wrinkling in Large Aspect Ratio Sandwich Panels
,”
Compos. Part A: Appl. Sci. Manuf.
,
36
(
10
), pp.
1412
1420
.
16.
Birman
,
V.
,
2004
, “
Dynamic Wrinkling in Sandwich Beams
,”
Compos. Part B: Eng.
,
35
(6–8), pp.
665
672
.
17.
Lim
,
J. Y.
, and
Bart-Smith
,
H.
,
2015
, “
An Analytical Model for the Face Wrinkling Failure Prediction of Metallic Corrugated Core Sandwich Columns in Dynamic Compression
,”
Int. J. Mech. Sci.
,
92
, pp.
290
303
.
18.
Noor
,
A. K.
,
Burton
,
W. S.
, and
Bert
,
C. W.
,
1996
, “
Computational Models for Sandwich Panels and Shells
,”
ASME Appl. Mech. Rev.
,
49
(
3
), pp.
155
199
.
19.
Sokolinsky
,
V.
, and
Frostig
,
Y.
,
2000
, “
Branching Behavior in the Nonlinear Response of Sandwich Panels With a Transversely Flexible Core
,”
Int. J. Solids Struct.
,
37
(
40
), pp.
5745
5772
.
20.
Hohe
,
J.
,
Librescu
,
L.
, and
Oh
,
S. Y.
,
2006
, “
Dynamic Buckling of Flat and Curved Sandwich Panels With Transversely Compressible Core
,”
Compos. Struct.
,
74
(
1
), pp.
10
24
.
21.
Hohe
,
J.
, and
Librescu
,
L.
,
2008
, “
Recent Results on the Effect of the Transverse Core Compressibility on the Static and Dynamic Response of Sandwich Structures
,”
Compos. Part B: Eng.
,
39
(
1
), pp.
108
119
.
22.
Phan
,
C. N.
,
Bailey
,
N. W.
,
Kardomateas
,
G. A.
, and
Battley
,
M. A.
,
2012
, “
Wrinkling of Sandwich Wide Panels/Beams Based on the Extended High-Order Sandwich Panel Theory: Formulation, Comparison With Elasticity and Experiments
,”
Arch. Appl. Mech.
,
82
(
10–11
), pp.
1585
1599
.
23.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids, Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
24.
Birman
,
V.
,
Chandrashekhara
,
K.
,
Hopkins
,
M. S.
, and
Volz
,
J. S.
,
2013
, “
Effects of Nanoparticle Impregnation of Polyurethane Foam Core on the Performance of Sandwich Beams
,”
Compos. Part B: Eng.
,
46
, pp.
234
246
.
25.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1982
, “
Mechanics of Three-Dimensional Cellular Materials
,”
Proc. R. Soc. London, Ser. A
,
382
(
1782
), pp.
43
59
.
26.
Goods
,
S. H.
,
Neuschwanger
,
C. L.
,
Whinnery
,
L. L.
, and
Nix
,
W. D.
,
1999
, “
Mechanical Properties of a Particle-Strengthened Polyurethane Foam
,”
J. Appl. Polym. Sci.
,
74
(
11
), pp.
2724
2736
.
27.
Triantafillou
,
T. C.
, and
Gibson
,
L. J.
,
1987
, “
Failure Mode Maps for Foam Core Sandwich Beams
,”
Mater. Sci. Eng.
,
95
(
C
), pp.
37
53
.
28.
Mouritz
,
A. P.
,
Feih
,
S.
,
Kandare
,
E.
,
Mathys
,
Z.
,
Gibson
,
A. G.
,
Des Jardin
,
P. E.
,
Case
,
S. W.
, and
Lattimer
,
B. Y.
,
2009
, “
Review of Fire Structural Modelling of Polymer Composites
,”
Compos. Part A: Appl. Sci. Manuf.
,
40
(
12
), pp.
1800
1814
.
29.
Liu
,
L.
,
Holmes
,
J. W.
,
Kardomateas
,
G. A.
, and
Birman
,
V.
,
2011
, “
Compressive Response of Composites Under Combined Fire and Compression Loading
,”
Fire Technol.
,
47
(
4
), pp.
985
1016
.
30.
Gibson
,
A. G.
,
Wu
,
Y. S.
,
Evans
,
J. T.
, and
Mouritz
,
A. P.
,
2006
, “
Laminate Theory Analysis of Composites Under Load in Fire
,”
J. Compos. Mater.
,
40
(
7
), pp.
639
658
.
31.
Feih
,
S.
,
Mathys
,
Z.
,
Gibson
,
A. G.
, and
Mouritz
,
A. P.
,
2007
, “
Modelling the Tension and Compression Strengths of Polymer Laminates in Fire
,”
Compos. Sci. Technol.
,
67
(
3–4
), pp.
551
564
.
32.
Birman
,
V.
,
Kardomateas
,
G. A.
,
Simitses
,
G. J.
, and
Li
,
R.
,
2006
, “
Response of a Sandwich Panel Subject to Fire or Elevated Temperature on One of the surfaces
,”
Compos. Part A: Appl. Sci. Manuf.
,
37
(
7
), pp.
981
988
.
33.
Kardomateas
,
G. A.
,
Simitses
,
G. J.
, and
Birman
,
V.
,
2009
, “
Structural Integrity of Composite Columns Subject to Fire
,”
J. Compos. Mater.
,
43
(
9
), pp.
1015
1033
.
34.
Anjang
,
A.
,
Chevali
,
V. S.
,
Lattimer
,
B. Y.
,
Case
,
S. W.
,
Feih
,
S.
, and
Mouritz
,
A. P.
,
2015
, “
Post-Fire Mechanical Properties of Sandwich Composite Structures
,”
Compos. Struct.
,
132
, pp.
1019
1028
.
35.
Chiou
,
B.
, and
Schoen
,
P. E.
,
2002
, “
Effects of Crosslinking on Thermal and Mechanical Properties of Polyurethanes
,”
J. Appl. Polym. Sci.
,
83
(
1
), pp.
212
223
.
36.
Gibson
,
R. F.
,
2007
,
Principles of Composite Material Mechanics
,
CRC Press
,
Boca Raton
.
37.
Traeger
,
R. K.
,
1967
, “
Physical Properties of Rigid Polyurethane Foams
,”
J. Cell. Plast.
,
3
(
9
), pp.
405
418
.
38.
Kulkarni
,
A.
, and
Gibson
,
R.
,
2003
, “
Nondestructive Characterization of Effects of Temperature and Moisture on Elastic Moduli of Vinyl Ester Resin and E-Glass/Vinylester Composite
,”
American Society of Composites 18th Annual Technical Conference
, Paper No. 122.
39.
Gibson
,
A. G.
,
Browne
,
T.
,
Feih
,
S.
, and
Mouritz
,
A. P.
,
2012
, “
Modeling Composite High Temperature Behavior and Fire Response Under Load
,”
J. Compos. Mater.
,
46
(
16
), pp.
2005
2022
.
You do not currently have access to this content.