The use of large-deflection springs, tabs, and other compliant systems to provide integral attachment, joining, and retention is well established and may be found throughout nature and the designed world. Such systems present a challenge for mechanical analysis due to the interaction of contact mechanics with large-deflection analysis. Interlocking structures experience a variable reaction force that depends on the cantilever angle at the contact point. This paper develops the mathematical analysis of interlocking cantilevers and provides verification with finite element analysis and physical measurements. Motivated by new opportunities for nanoscale compliant systems based on ultrathin films and two-dimensional (2D) materials, we created a nondimensional analysis of retention tab systems. This analysis uses iterative and elliptic integral solutions to the moment–curvature elastica of a suspended cantilever and can be scaled to large-deflection cantilevers of any size for which continuum mechanics applies. We find that when a compliant structure is bent backward during loading, overlap increases with load, until a force maximum is reached. In a force-limited scenario, surpassing this maximum would result in snap-through motion. By using angled cantilever restraint systems, the magnitude of insertion force relative to retention force can vary by 50× or more. The mathematical theory developed in this paper provides a basis for fast analysis and design of compliant retention systems, and expands the application of elliptic integrals for nonlinear problems.

References

1.
Brown
,
J. J.
, and
Bright
,
V. M.
,
2016
, “
Mechanical Interfacing Using Suspended Ultrathin Films From ALD
,”
J. Microelectromech. Syst.
,
25
(
2
), pp.
356
361
.
2.
Reed
,
M. L.
,
Han
,
H.
, and
Weiss
,
L. E.
,
1992
, “
Silicon Micro-Velcro
,”
Adv. Mater.
,
4
(
1
), pp.
48
51
.
3.
Han
,
H.
,
Weiss
,
L. E.
, and
Reed
,
M. L.
,
1992
, “
Micromechanical Velcro
,”
J. Microelectromech. Syst.
,
1
(
1
), pp.
37
43
.
4.
Han
,
H.
,
Weiss
,
L. E.
, and
Reed
,
M. L.
,
1991
, “
Mating and Piercing Micromechanical Structures for Surface Bonding Applications
,” An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, IEEE Conference on Micro Electro Mechanical Systems (
MEMS
), Nara, Japan, Dec. 30–Jan. 2, pp.
253
258
.
5.
Messler
,
R. W.
,
Genc
,
S.
, and
Gabriele
,
G. A.
,
1997
, “
Integral Attachment Using Snap-Fit Features: A Key to Assembly Automation—Part 4: Selection of Locking Features
,”
Assem. Autom.
,
17
(
4
), pp.
315
328
.
6.
Messler
,
R. W.
,
Genc
,
S.
, and
Gabriele
,
G. A.
,
1997
, “
Research Articles Integral Attachment Using Snap-Fit Features: A Key to Assembly Automation—Part 3: An Attachment-Level Design Methodology
,”
Assem. Autom.
,
17
(
3
), pp.
239
248
.
7.
Messler
,
R. W.
, Jr
.,
2004
,
Joining of Materials and Structures: From Pragmatic Process to Enabling Technology
,
Elsevier Butterworth-Heinemann
,
Burlington, MA
.
8.
Genc
,
S.
,
Messler
,
R. W.
, and
Gabriele
,
G. A.
,
1998
, “
Integral Attachment Using Snap-Fit Features: A Key to Assembly Automation—Part 7: Testing the Conceptual Design Methodology With a Case Study
,”
Assem. Autom.
,
18
(
3
), pp.
223
236
.
9.
Landau
,
K.
,
Landau
,
U.
, and
Salmanzadeh
,
H.
,
2009
, “
Productivity Improvement With Snap-Fit Systems
,”
Industrial Engineering and Ergonomics: Visions, Concepts, Methods and Tools
,
C. M.
Schlick
, ed.,
Springer-Verlag
,
Berlin
, pp.
595
608
.
10.
Messler
,
R. W.
, Jr
., and
Genc
,
S.
,
1998
, “
Integral Micro-Mechanical Interlock (IMMI) Joints for Polymer-Matrix Composite Structures
,”
J. Thermoplast. Compos. Mater.
,
11
(3), pp.
200
215
.
11.
Klahn
,
C.
,
Singer
,
D.
, and
Meboldt
,
M.
,
2016
, “
Design Guidelines for Additive Manufactured Snap-Fit Joints
,”
Procedia CIRP
,
50
, pp.
264
269
.
12.
Ying
,
L.
,
Saitou
,
K.
,
Kikuchi
,
N.
,
Skerlos
,
S. J.
, and
Papalambros
,
P. Y.
,
2001
, “
Design of Heat-Activated Reversible Integral Attachments for Product-Embedded Disassembly
,” Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing (
EcoDesign
), Tokyo, Japan, Dec. 11–15, pp.
360
365
.
13.
Shalaby
,
M.
, and
Saitou
,
K.
,
2008
, “
Design for Disassembly With High-Stiffness Heat-Reversible Locator-Snap Systems
,”
ASME J. Mech. Des.
,
130
(
12
), p.
121701
.
14.
Suri
,
G.
, and
Luscher
,
A. F.
,
2000
, “
Structural Abstraction in Snap-Fit
,”
ASME J. Mech. Des.
,
122
(4), pp.
395
402
.
15.
Jorabchi
,
K.
, and
Suresh
,
K.
,
2009
, “
Nonlinear Algebraic Reduction for Snap-Fit Simulation
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061004
.
16.
Chen
,
Y. H.
, and
Lan
,
C. C.
,
2012
, “
Design of a Constant-Force Snap-Fit Mechanism for Minimal Mating Uncertainty
,”
Mech. Mach. Theory
,
55
, pp.
34
50
.
17.
Pugno
,
N. M.
,
2007
, “
Velcro® Nonlinear Mechanics
,”
Appl. Phys. Lett.
,
90
(
12
), p.
121918
.
18.
Szyndler
,
M. W.
,
Haynes
,
K. F.
,
Potter
,
M. F.
,
Corn
,
R. M.
, and
Loudon
,
C.
,
2013
, “
Entrapment of Bed Bugs by Leaf Trichomes Inspires Microfabrication of Biomimetic Surfaces
,”
J. R. Soc. Interface
,
10
(
83
), p.
20130174
.
19.
Gorb
,
E.
, and
Gorb
,
S.
,
2002
, “
Contact Separation Force of the Fruit Burrs in Four Plant Species Adapted to Dispersal by Mechanical Interlocking
,”
Plant Physiol. Biochem.
,
40
(
4
), pp.
373
381
.
20.
Chen
,
Q.
,
Gorb
,
S. N.
,
Gorb
,
E.
, and
Pugno
,
N.
,
2013
, “
Mechanics of Plant Fruit Hooks
,”
J. R. Soc. Interface
,
10
(
81
), p.
20120913
.
21.
Kesel
,
A. B.
,
Martin
,
A.
, and
Seidl
,
T.
,
2004
, “
Getting a Grip on Spider Attachment: An AFM Approach to Microstructure Adhesion in Arthropods
,”
Smart Mater. Struct.
,
13
(
3
), pp.
512
518
.
22.
Kovalev
,
A.
,
Filippov
,
A. E.
, and
Gorb
,
S. N.
,
2013
, “
Unzipping Bird Feathers
,”
J. R. Soc. Interface
,
11
(
92
), p.
20130988
.
23.
Williams
,
J. A.
,
Davies
,
S. G.
, and
Frazer
,
S.
,
2007
, “
The Peeling of Flexible Probabilistic Fasteners
,”
Tribol. Lett.
,
26
(
3
), pp.
213
222
.
24.
Chen
,
W.
, and
Sitaraman
,
S. K.
,
2016
, “
Area-Array of 3-Arc-Fan Compliant Interconnects as Effective Drop-Impact Isolator for Microsystems
,”
J. Microelectromech. Syst.
,
25
(
2
), pp.
337
346
.
25.
Miller
,
D. C.
,
Zhang
,
W.
, and
Bright
,
V. M.
,
2001
, “
Micromachined, Flip-Chip Assembled, Actuatable Contacts for Use in High Density Interconnection in Electronics Packaging
,”
Sens. Actuators A
,
89
(
1–2
), pp.
76
87
.
26.
Vokoun
,
D.
,
Sedlák
,
P.
,
Frost
,
M.
,
Pilch
,
J.
,
Majtás
,
D.
, and
Šittner
,
P.
,
2011
, “
Velcro-Like Fasteners Based on NiTi Micro-Hook Arrays
,”
Smart Mater. Struct.
,
20
(
8
), p.
085027
.
27.
Ahn
,
Y.
,
Jang
,
Y.
,
Selvapalam
,
N.
,
Yun
,
G.
, and
Kim
,
K.
,
2013
, “
Supramolecular Velcro for Reversible Underwater Adhesion
,”
Angew. Chem. Int. Ed.
,
52
(
11
), pp.
3140
3144
.
28.
Berber
,
S.
,
Kwon
,
Y.-K.
, and
Tománek
,
D.
,
2003
, “
Bonding and Energy Dissipation in a Nanohook Assembly
,”
Phys. Rev. Lett.
,
91
(
16
), p.
165503
.
29.
Filter
,
W. F.
, and
Hohimer
,
J. P.
,
2002
, “Micromechanical Die Attachment Surcharge,” Sandia Corporation, Albuquerque, NM, Patent No.
US6392144 B1
.https://www.google.com/patents/US6392144
30.
Peng
,
H.-C.
,
Khoo
,
H. S.
, and
Tseng
,
F.-G.
,
2012
, “
Increased Interfacial Strength at Microscale Silicon–Polymer Interface by Nanowires Assisted Micro-Sandglass Shaped Interlocks
,”
Jpn. J. Appl. Phys.
,
51
(2R), p.
27302
.
31.
Gillies
,
A. G.
, and
Fearing
,
R. S.
,
2010
, “
A Micromolded Connector for Reconfigurable Millirobots
,”
J. Micromech. Microeng.
,
20
(
10
), p.
105011
.
32.
Yap
,
C. C.
,
Brun
,
C.
,
Tan
,
D.
,
Li
,
H.
,
Teo
,
E. H. T.
,
Baillargeat
,
D.
, and
Tay
,
B. K.
,
2012
, “
Carbon Nanotube Bumps for the Flip Chip Packaging System
,”
Nanoscale Res. Lett.
,
7
(
1
), p.
105
.
33.
Roenbeck
,
M. R.
,
Furmanchuk
,
A.
,
An
,
Z.
,
Paci
,
J. T.
,
Wei
,
X.
,
Nguyen
,
S. T.
,
Schatz
,
G. C.
, and
Espinosa
,
H. D.
,
2015
, “
Molecular-Level Engineering of Adhesion in Carbon Nanomaterial Interfaces
,”
Nano Lett.
,
15
(
7
), pp.
4504
4516
.
34.
Jonnalagadda
,
P.
,
Mescheder
,
U.
,
Kovacs
,
A.
, and
Nimoe
,
A.
,
2011
, “
Nanoneedles Based on Porous Silicon for Chip Bonding With Self Assembly Capability
,”
Phys. Status Solidi C
,
8
(
6
), pp.
1841
1846
.
35.
Aksak
,
B.
,
Murphy
,
M. P.
, and
Sitti
,
M.
,
2007
, “
Adhesion of Biologically Inspired Vertical and Angled Polymer Microfiber Arrays
,”
Langmuir
,
23
(
6
), pp.
3322
3332
.
36.
Keshavarzi
,
S.
,
Mescheder
,
U.
, and
Reinecke
,
H.
,
2016
, “
Room Temperature Si–Si Direct Bonding Technique Using Velcro-like Surfaces
,”
J. Microelectromech. Syst.
,
25
(
2
), pp.
371
379
.
37.
Sang-Hyun
,
L.
, and
Junseok
,
C. Y. N.
,
2009
, “
Micro-Brush Press-on Contact: A New Technique for Room Temperature Electrical and Mechanical Attachment
,”
19th IEEE International Conference on Micro Electro Mechanical Systems
(
MEMS
), Istanbul, Turkey, Jan. 22–26, pp.
342
345
.
38.
Kim
,
T.
,
Il
,
Pang
,
C.
, and
Suh
,
K. Y.
,
2009
, “
Shape-Tunable Polymer Nanofibrillar Structures by Oblique Electron Beam Irradiation
,”
Langmuir
,
25
(
16
), pp.
8879
8882
.
39.
Gorb
,
S. N.
,
Beutel
,
R. G.
,
Gorb
,
E. V.
,
Jiao
,
Y.
,
Kastner
,
V.
,
Niederegger
,
S.
,
Popov
,
V. L.
,
Scherge
,
M.
,
Schwarz
,
U.
, and
Vötsch
,
W.
,
2002
, “
Structural Design and Biomechanics of Friction-Based Releasable Attachment Devices in Insects
,”
Integr. Comp. Biol.
,
42
(
6
), pp.
1127
1139
.
40.
King
,
D. R.
,
Bartlett
,
M. D.
,
Gilman
,
C. A.
,
Irschick
,
D. J.
, and
Crosby
,
A. J.
,
2014
, “
Creating Gecko-like Adhesives for ‘Real World' Surfaces
,”
Adv. Mater.
,
26
(
25
), pp.
4345
4351
.
41.
Bartlett
,
M. D.
,
Croll
,
A. B.
,
King
,
D. R.
,
Paret
,
B. M.
,
Irschick
,
D. J.
, and
Crosby
,
A. J.
,
2012
, “
Looking Beyond Fibrillar Features to Scale Gecko-like Adhesion
,”
Adv. Mater.
,
24
(
8
), pp.
1078
1083
.
42.
Boesel
,
L. F.
,
Cremer
,
C.
,
Arzt
,
E.
, and
Campo
,
A. D.
,
2010
, “
Gecko-Inspired Surfaces: A Path to Strong and Reversible Dry Adhesives
,”
Adv. Mater.
,
22
(
19
), pp.
2125
2137
.
43.
Sameoto
,
D.
,
Sharif
,
H.
,
Díaz Téllez
,
J. P.
,
Ferguson
,
B.
, and
Menon
,
C.
,
2012
, “
Nonangled Anisotropic Elastomeric Dry Adhesives With Tailorable Normal Adhesion Strength and High Directionality
,”
J. Adhes. Sci. Technol.
,
28
(
3–4
), pp.
354
366
.
44.
Wasay
,
A.
, and
Sameoto
,
D.
,
2015
, “
Gecko Gaskets for Self-Sealing and High-Strength Reversible Bonding of Microfluidics
,”
Lab Chip
,
15
(
13
), pp.
2749
2753
.
45.
Gilman
,
C. A.
,
Imburgia
,
M. J.
,
Bartlett
,
M. D.
,
King
,
D. R.
,
Crosby
,
A. J.
, and
Irschick
,
D. J.
,
2015
, “
Geckos as Springs: Mechanics Explain Across-Species Scaling of Adhesion
,”
PLoS One
,
10
(
9
), pp.
1
15
.
46.
Song
,
J.
,
Menguc
,
Y.
, and
Sitti
,
M.
,
2013
, “
Enhanced Fabrication and Characterization of Gecko-Inspired Mushroom-Tipped Microfiber Adhesives
,”
J. Adhes. Sci. Technol.
,
27
(
17
), pp.
1921
1932
.
47.
Rahmawan
,
Y.
,
Yoon
,
H.
,
Moon
,
M.-W.
,
Jeong
,
H.-G.
, and
Suh
,
K.-Y.
,
2014
, “
Janus-Faced Micro and Nanopillars for Geometry and Surface Chemistry Controllable Bioinspired Dry Adhesives
,”
J. Adhes. Sci. Technol.
,
28
(3–4), pp.
367
386
.
48.
Krajnc
,
M.
, and
Ziherl
,
P.
,
2015
, “
Theory of Epithelial Elasticity
,”
Phys. Rev. E.
,
92
(
5
), p. 052713.
49.
Hatami-Marbini
,
H.
, and
Mofrad
,
M. R. K.
,
2015
, “
Rheology and Mechanics of the Cytoskeleton
,”
Complex Fluids in Biological Systems
,
S.
Spagnolie
, ed., Springer, New York, Chap. 5.
50.
Fain
,
B.
,
Rudnick
,
J.
, and
Ostlund
,
S.
,
1997
, “
Conformations of Linear DNA
,”
Phys. Rev. E
,
55
(
6
), pp.
7364
7368
.
51.
Goyal
,
S.
, and
Perkins
,
N. C.
,
2008
, “
Looping Mechanics of Rods and DNA With Non-Homogeneous and Discontinuous Stiffness
,”
Int. J. Non Linear. Mech.
,
43
(
10
), pp.
1121
1129
.
52.
Bauer
,
W. R.
,
Lund
,
R. A.
, and
White
,
J. H.
,
1993
, “
Twist and Writhe of a DNA Loop Containing Intrinsic Bends
,”
Proc. Natl. Acad. Sci. U. S. A.
,
90
(
3
), pp.
833
837
.
53.
Benham
,
C. J.
, and
Mielke
,
S. P.
,
2005
, “
DNA Mechanics
,”
Annu. Rev. Biomed. Eng.
,
7
(1), pp.
21
53
.
54.
Chirikjian
,
G. S.
,
2008
, “
The Stochastic Elastica and Excluded-Volume Perturbations of DNA Conformational Ensembles
,”
Int. J. Non Linear. Mech.
,
43
(
10
), pp.
1108
1120
.
55.
Baranello
,
L.
,
Levens
,
D.
,
Gupta
,
A.
, and
Kouzine
,
F.
,
2012
, “
The Importance of Being Supercoiled: How DNA Mechanics Regulate Dynamic Processes
,”
Biochim. Biophys. Acta
,
1819
(
7
), pp.
632
638
.
56.
Blees
,
M. K.
,
Barnard
,
A. W.
,
Rose
,
P. A.
,
Roberts
,
S. P.
,
McGill
,
K. L.
,
Huang
,
P. Y.
,
Ruyack
,
A. R.
,
Kevek
,
J. W.
,
Kobrin
,
B.
,
Muller
,
D. A.
, and
McEuen
,
P. L.
,
2015
, “
Graphene Kirigami
,”
Nature
,
524
(
7564
), pp.
204
207
.
57.
Bauer
,
J.
,
Schroer
,
A.
,
Schwaiger
,
R.
, and
Kraft
,
O.
,
2016
, “
Approaching Theoretical Strength in Glassy Carbon Nanolattices
,”
Nat. Mater.
,
15
(
4
), pp.
438
443
.
58.
Pal
,
R. K.
,
Ruzzene
,
M.
, and
Rimoli
,
J. J.
,
2016
, “
A Continuum Model for Nonlinear Lattices Under Large Deformations
,”
Int. J. Solids Struct.
,
96
, pp.
300
319
.
59.
Restrepo
,
D.
,
Mankame
,
N. D.
, and
Zavattieri
,
P. D.
,
2015
, “
Phase Transforming Cellular Materials
,”
Extrem. Mech. Lett.
,
4
, pp.
52
60
.
60.
Rafsanjani
,
A.
, and
Pasini
,
D.
,
2016
, “
Bistable Auxetic Mechanical Metamaterials Inspired by Ancient Geometric Motifs
,”
Extrem. Mech. Lett.
,
9
(Pt. 2), pp.
291
296
.
61.
Shan
,
S.
,
Kang
,
S. H.
,
Raney
,
J. R.
,
Wang
,
P.
,
Fang
,
L.
,
Candido
,
F.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2015
, “
Multistable Architected Materials for Trapping Elastic Strain Energy
,”
Adv. Mater.
,
27
(
29
), pp.
4296
301
.
62.
Euler
,
L.
,
1744
, “
De Curvis Elasticis, Additamentum I
,”
Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Sive Solutio Problematis Isoperimetrici Latissimo Sensu Accepti
,
Marcum-Michaelem Bousquet
,
Geneva, Switzerland
, pp.
245
310
.
63.
Frostig
,
Y.
,
2009
, “
Elastica of Sandwich Panels With a Transversely Flexible Core-a High-Order Theory Approach
,”
Int. J. Solids Struct.
,
46
(
10
), pp.
2043
2059
.
64.
Majidi
,
C. S.
,
Groff
,
R. E.
, and
Fearing
,
R. S.
,
2005
, “
Attachment of Fiber Array Adhesive Through Side Contact
,”
J. Appl. Phys.
,
98
(
10
), p. 103521.
65.
Majidi
,
C.
,
2009
, “
Shear Adhesion Between an Elastica and a Rigid Flat Surface
,”
Mech. Res. Commun.
,
36
(
3
), pp.
369
372
.
66.
Zelikin
,
M. I.
,
2012
, “
Theory and Applications of the Problem of Euler Elastica
,”
Russ. Math. Surv.
,
67
(
2
), pp.
281
296
.
67.
Ji
,
J.
, and
Lee
,
K.-M.
,
2013
, “Discrete Deformation Models for Real-Time Computation of Compliant Mechanisms,”
ASME
Paper No. DSCC2013-4108.
68.
Fertis
,
D. G.
,
1999
,
Nonlinear Mechanics
,
CRC Press
,
Boca Raton, FL
.
69.
Howell
,
L. L.
, and
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
.
70.
Kimball
,
C.
, and
Tsai
,
L.
,
2002
, “
Modeling of Flexural Beams Subjected to Arbitrary End Loads
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
223
235
.
71.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021006
.
72.
Byrd
,
P. F.
, and
Friedman
,
M. D.
,
1971
,
Handbook of Elliptic Integrals for Engineers and Scientists
,
Springer
,
Berlin
.
You do not currently have access to this content.