It is an interesting open question how to achieve large actuation of a dielectric elastomer (DE). In many previous works, in order to harness snap-through instability to achieve large deformation, a reservoir was employed to assist the dielectric elastomer actuator (DEA) to optimize its loading condition/path, which makes the whole actuation system bulky and heavy. In this paper, we explore large actuation of a DE balloon with applications to a soft flight system. The balloon consists of two separate DEAs: The inner one is stiffer while the outer one is softer. The whole actuation system has a small volume and a low weight, but can achieve large actuation by harnessing dielectric breakdown of the inner elastomer. The volume induced by dielectric breakdown is more than 20 times the voltage-induced volume change of DEAs. The experiments demonstrate a soft flight system, which can move effectively in air by taking advantage of large actuation of this DE balloon. This project also shows that failure of materials can be harnessed to achieve useful functionalities.

References

References
1.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
.
2.
Ashley
,
S.
,
2003
, “
Artificial Muscles
,”
Sci. Am.
,
289
, pp.
52
59
.
3.
Carpi
,
F.
,
Bauer
,
S.
, and
De Rossi
,
D.
,
2010
, “
Stretching Dielectric Elastomer Performance
,”
Science
,
330
(
6012
), pp.
1759
1761
.
4.
Godaba
,
H.
,
Li
,
J.
,
Wang
,
Y.
, and
Zhu
,
J.
,
2016
, “
A Soft Jellyfish Robot Driven by a Dielectric Elastomer Actuator
,”
IEEE Robot. Autom. Lett.
,
1
(
2
), pp.
624
631
.
5.
Wang
,
Y.
, and
Zhu
,
J.
,
2016
, “
Artificial Muscles for Jaw Movements
,”
Extrem. Mech. Lett.
,
6
, pp.
88
95
.
6.
Shintake
,
J.
,
Rosset
,
S.
,
Schubert
,
B.
,
Floreano
,
D.
, and
Shea
,
H.
,
2016
, “
Versatile Soft Grippers With Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators
,”
Adv. Mater.
,
28
(2), pp.
231
238
.
7.
Pei
,
Q.
,
Pelrine
,
R.
,
Stanford
,
S.
,
Kornbluh
,
R.
, and
Rosenthal
,
M.
,
2003
, “
Electroelastomer Rolls and Their Application for Biomimetic Walking Robots
,”
Synth. Met.
,
135–136
, pp.
129
131
.
8.
Chen
,
D.
, and
Pei
,
Q.
,
2017
, “
Electronic Muscles and Skins: A Review of Soft Sensors and Actuators
,”
Chem. Rev.
,
117
(17), pp. 11239–11268.
9.
Li
,
T.
,
Li
,
G.
,
Liang
,
Y.
,
Cheng
,
T.
,
Dai
,
J.
,
Yang
,
X.
,
Liu
,
B.
,
Zeng
,
Z.
,
Huang
,
Z.
,
Luo
,
Y.
,
Xie
,
T.
, and
Yang
,
W.
,
2017
, “
Fast-Moving Soft Electronic Fish
,”
Sci. Adv.
,
3
(
4
), p.
e1602045
.
10.
Keplinger
,
C.
,
Li
,
T.
,
Baumgartner
,
R.
,
Suo
,
Z.
, and
Bauer
,
S.
,
2012
, “
Harnessing Snap-Through Instability in Soft Dielectrics to Achieve Giant Voltage-Triggered Deformation
,”
Soft Matter
,
8
, pp.
285
288
.
11.
Li
,
T.
,
Keplinger
,
C.
,
Baumgartner
,
R.
,
Bauer
,
S.
,
Yang
,
W.
, and
Suo
,
Z.
,
2013
, “
Giant Voltage-Induced Deformation in Dielectric Elastomers Near the Verge of Snap-Through Instability
,”
J. Mech. Phys. Solids
,
61
(
2
), pp.
611
628
.
12.
Godaba
,
H.
,
Foo
,
C. C.
,
Zhang
,
Z. Q.
,
Khoo
,
B. C.
, and
Zhu
,
J.
,
2014
, “
Giant Voltage-Induced Deformation of a Dielectric Elastomer Under a Constant Pressure
,”
Appl. Phys. Lett.
,
105
, p.
112901
.
13.
Lu
,
T. Q.
,
An
,
L.
,
Li
,
J.
,
Yuan
,
C.
, and
Wang
,
T. J.
,
2015
, “
Electro-Mechanical Coupling Bifurcation and Bulging Propagation in a Cylindrical Dielectric Elastomer Tube
,”
J. Mech. Phys. Solids
,
85
, pp.
160
175
.
14.
An
,
L.
,
Wang
,
F. F.
,
Cheng
,
S. B.
,
Lu
,
T. Q.
, and
Wang
,
T. J.
,
2015
, “
Experimental Investigation of the Electromechanical Phase Transition in a Dielectric Elastomer Tube
,”
Smart Mater. Struct.
,
24
(
3
), p.
035006
.
15.
Tolley
,
M. T.
,
Shepherd
,
R. F.
,
Mosadegh
,
B.
,
Galloway
,
K. C.
,
Wehner
,
M.
,
Karpelson
,
M.
,
Wood
,
R. J.
, and
Whitesides
,
G. M.
,
2014
, “
A Resilient, Untethered Soft Robot
,”
Soft Robot.
,
1
(
3
), pp.
213
223
.
16.
Kaltseis
,
R.
,
Keplinger
,
C.
,
Adrian Koh
,
S. J.
,
Baumgartner
,
R.
,
Goh
,
Y. F.
,
Ng
,
W. H.
,
Kogler
,
A.
,
Tröls
,
A.
,
Foo
,
C. C.
,
Suo
,
Z.
, and
Bauer
,
S.
,
2014
, “
Natural Rubber for Sustainable High-Power Electrical Energy Generation
,”
RSC Adv.
,
4
, pp.
27905
27913
.
17.
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers
,”
Acta Mech. Solidia Sin.
,
23
(
6
), pp.
549
578
.
18.
Zhao
,
X.
,
Hong
,
W.
, and
Suo
,
Z.
,
2007
, “
Electromechanical Hysteresis and Coexistent States in Dielectric Elastomers
,”
Phys. Rev. B
,
76
(
13
), p.
134113
.
19.
Gent
,
A. N.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
.
20.
Zhu
,
J.
,
Cai
,
S.
, and
Suo
,
Z.
,
2010
, “
Nonlinear Oscillation of a Dielectric Elastomer Balloon
,”
Polym. Int.
,
59
, pp.
378
383
.
21.
Carpi
,
F.
,
Anderson
,
I.
,
Bauer
,
S.
,
Frediani
,
G.
,
Gallone
,
G.
,
Gei
,
M.
,
Graaf
,
C.
,
Jean-Mistral
,
C.
,
Kaal
,
W.
,
Kofod
,
G.
,
Kollosche
,
M.
,
Kornbluh
,
R. D.
,
Lassen
,
B.
,
Matysek
,
M.
,
Michel
,
S.
,
Nowak
,
S.
,
O'Brien
,
B.
,
Pei
,
Q.
,
Pelrine
,
R.
,
Rechenbach
,
B.
,
Rosset
,
S.
, and
Shea
,
H. R.
,
2015
, “
Standards for Dielectric Elastomer Transducers
,”
Smart Mater. Struct.
,
24
(10), p.
105025
.
22.
Zhao
,
X.
, and
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers Capable of Giant Deformation of Actuation
,”
Phys. Rev. Lett.
,
104
(
17
), p.
178302
.
23.
Kollosche
,
M.
,
Kofod
,
G.
,
Suo
,
Z.
, and
Zhu
,
J.
,
2015
, “
Temporal Evolution and Instability in a Viscoelastic Dielectric Elastomer
,”
J. Mech. Phys. Solids
,
76
, pp.
47
64
.
24.
Koh
,
S. J. A.
,
Keplinger
,
C.
,
Li
,
T.
,
Bauer
,
S.
, and
Suo
,
Z.
,
2011
, “
Dielectric Elastomer Generators: How Much Energy Can Be Converted?
,”
IEEE/ASME Trans. Mechatronics
,
16
(
1
), pp.
33
41
.
25.
Austin
,
R.
,
2010
,
Unmanned Aircraft Systems: UAVs Design, Development and Deployment
,
Wiley
, Hoboken, NJ.
26.
Cai
,
G.
,
Chen
,
B. M.
, and
Lee
,
T. H.
,
2011
,
Unmanned Rotorcraft Systems
,
Springer
,
London
.
27.
Google X.
, 2017, “Loon for All—Project Loon—Google” Google X, Mountain View, CA, accessed Oct. 17, 2017, hththttps://www.google.com/intl/es419/loon/
28.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
, pp.
467
475
.
29.
Yajima
,
N.
,
Izutsu
,
N.
,
Imamura
,
T.
, and
Abe
,
T.
,
2009
,
Scientific Ballooning: Technology and Applications of Exploration Balloons Floating in the Stratosphere and the Atmospheres of Other Planets
,
Springer Science & Business Media
,
Berlin
.
You do not currently have access to this content.