Flexural propagation behavior of a metamaterial beam with circular membrane-mass structures is presented. Each cell is comprised of a base structure containing circular cavities filled by an elastic membrane with a centrally loaded mass. Numerical results show that there exist two kinds of bandgaps in such a system. One is called Bragg bandgap caused by structural periodicity; the other is called locally resonant (LR) bandgap caused by the resonant behavior of substructures. By altering the properties of the membrane-mass structure, the location of the resonant-type bandgap can be easily tuned. An analytical model is proposed to predict the lowest bandgap location. A good agreement is seen between the theoretical results and finite element (FE) results. Frequencies with negative mass density lie in the resonant-type bandgap.

References

References
1.
Mead
,
D. J.
,
1970
, “
Free Wave Propagation in Periodically Supported, Infinite Beams
,”
J. Sound Vib.
,
11
(
2
), pp.
181
197
.
2.
Mead
,
D. J.
,
1986
, “
A New Method of Analyzing Wave Propagation in Periodic Structures: Applications to Periodic Timoshenko Beams and Stiffened Plates
,”
J. Sound Vib.
,
104
(
1
), pp.
9
27
.
3.
Mead
,
D. J.
,
1996
, “
Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton, 1964-1995
,”
J. Sound Vib.
,
190
(
3
), pp.
495
524
.
4.
Ruzzene
,
M.
,
Mazzarella
,
L.
,
Tsopelas
,
P.
, and
Scarpa
,
F.
,
2002
, “
Wave Propagation in Sandwich Plates With Periodic Auxetic Core
,”
J. Intell. Mater. Syst. Struct.
,
13
(
9
), pp.
587
597
.
5.
Ruzzene
,
M.
, and
Tsopelas
,
P.
,
2003
, “
Control of Wave Propagation in Sandwich Plate Row With Periodic Honeycomb Core
,”
ASCE J. Eng. Mech.
,
129
(
9
), pp.
975
986
.
6.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y. Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
.
7.
Ho
,
K. M.
,
Cheng
,
C. K.
,
Yang
,
Z.
,
Zhang
,
X. X.
, and
Sheng
,
P.
,
2003
, “
Broadband Locally Resonant Sonic Shields
,”
Appl. Phys. Lett.
,
83
(
26
), pp.
5566
5568
.
8.
Sheng
,
P.
,
Zhang
,
X. X.
,
Liu
,
Z.
, and
Chan
,
C. T.
,
2003
, “
Locally Resonant Sonic Materials
,”
Phys. B
,
338
(
1–4
), pp.
201
205
.
9.
Chen
,
H.
, and
Chan
,
C. T.
,
2007
, “
Acoustic Cloaking in Three Dimensions Using Acoustic Metamaterials
,”
Appl. Phys. Lett.
,
91
(
18
), p.
183518
.
10.
Yao
,
S.
,
Zhou
,
X.
, and
Hu
,
G.
,
2008
, “
Experimental Study on Negative Effective Mass in a 1D Mass–Spring System
,”
New J. Phys.
,
10
(
4
), p.
043020
.
11.
Huang
,
H. H.
, and
Sun
,
C. T.
,
2009
, “
Wave Attenuation Mechanism in an Acoustic Metamaterial With Negative Effective Mass Density
,”
New J. Phys.
,
11
(
1
), p.
013003
.
12.
Huang
,
G. L.
, and
Sun
,
C. T.
,
2010
, “
Band Gaps in a Multiresonator Acoustic Metamaterial
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031003
.
13.
Tan
,
K. T.
,
Huang
,
H. H.
, and
Sun
,
C. T.
,
2012
, “
Optimizing the Band Gap of Effective Mass Negativity in Acoustic Metamaterials
,”
Appl. Phys. Lett.
,
101
(
24
), p.
241902
.
14.
Tan
,
K. T.
,
Huang
,
H. H.
, and
Sun
,
C. T.
,
2014
, “
Blast-Wave Impact Mitigation Using Negative Effective Mass Density Concept of Elastic Metamaterials
,”
Int. J. Impact Eng.
,
64
, pp.
20
29
.
15.
Chen
,
J. S.
,
Sharma
,
B.
, and
Sun
,
C. T.
,
2011
, “
Dynamic Behaviour of Sandwich Structure Containing Spring-Mass Resonators
,”
Compos. Struct.
,
93
(
8
), pp.
2120
2125
.
16.
Xiao
,
Y.
,
Wen
,
J.
, and
Wen
,
X.
,
2012
, “
Longitudinal Wave Band Gaps in Metamaterial-Based Elastic Rods Containing Multi-Degree-of-Freedom Resonators
,”
New J. Phys.
,
14
(
3
), p.
033042
.
17.
Liu
,
L.
, and
Hussein
,
M. I.
,
2012
, “
Wave Motion in Periodic Flexural Beams and Characterization of the Transition Between Bragg Scattering and Local Resonance
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011003
.
18.
Xiao
,
Y.
,
Wen
,
J.
, and
Wen
,
X.
,
2012
, “
Flexural Wave Band Gaps in Locally Resonant Thin Plates With Periodically Attached Spring-Mass Resonators
,”
J. Phys. D.: Appl. Phys.
,
45
(
19
), p.
195401
.
19.
Pai
,
P. F.
,
Peng
,
H.
, and
Jiang
,
S.
,
2014
, “
Acoustic Metamaterial Beams Based on Multi-Frequency Vibration Absorbers
,”
Int. J. Mech. Sci.
,
79
, pp.
195
205
.
20.
Chen
,
J. S.
, and
Tsai
,
S. M.
,
2016
, “
Sandwich Structures With Periodic Assemblies on Elastic Foundation Under Moving Loads
,”
J. Vib. Control
,
22
(
10
), pp.
2519
2529
.
21.
Chen
,
J. S.
, and
Huang
,
Y. J.
,
2016
, “
Wave Propagation in Sandwich Structures With Multiresonators
,”
ASME J. Vib. Acoust.
,
138
(
4
), p.
041009
.
22.
Chen
,
H.
,
Li
,
X. P.
,
Chen
,
Y. Y.
, and
Huang
,
G. L.
,
2017
, “
Wave Propagation and Absorption of Sandwich Beams Containing Interior Dissipative Multi-Resonators
,”
Ultrasonics.
,
76
, pp.
99
108
.
23.
Yang
,
Z.
,
Mei
,
J.
,
Yang
,
M.
,
Chan
,
N. H.
, and
Sheng
,
P.
,
2008
, “
Membrane-Type Acoustic Metamaterial With Negative Dynamic Mass
,”
Phys. Rev. Lett.
,
101
(
20
), p.
204301
.
24.
Naify
,
C. J.
,
Chang
,
C. M.
,
McKnight
,
G.
, and
Nutt
,
S.
,
2010
, “
Transmission Loss and Dynamic Response of Membrane-Type Locally Resonant Acoustic Metamaterials
,”
J. Appl. Phys.
,
108
(
11
), p.
114905
.
25.
Zhang
,
Y.
,
Wen
,
J.
,
Xiao
,
Y.
,
Wen
,
X.
, and
Wang
,
J.
,
2012
, “
Theoretical Investigation of the Sound Attenuation of Membrane-Type Acoustic Metamaterials
,”
Phys. Lett. A.
,
376
(
17
), pp.
1489
1494
.
26.
Varanasi
,
S.
,
Bolton
,
J. S.
,
Siegmund
,
T. H.
, and
Cipra
,
R. J.
,
2013
, “
The Low Frequency Performance of Metamaterial Barriers Based on Cellular Structures
,”
Appl. Acoust.
,
74
(
4
), pp.
485
495
.
27.
Chen
,
Y.
,
Huang
,
G. L.
,
Zhou
,
X. M.
,
Hu
,
G. K.
, and
Sun
,
C. T.
,
2014
, “
The Coupled Vibroacoustic Model of Acoustic Metamaterials: Membrane Model
,”
J. Acoust. Soc. Am.
,
136
(
3
), pp.
969
979
.
28.
Chen
,
Y.
,
Huang
,
G. L.
,
Zhou
,
X. M.
,
Hu
,
G. K.
, and
Sun
,
C. T.
,
2014
, “
The Coupled Vibroacoustic Model of Acoustic Metamaterials: Plate Model
,”
J. Acoust. Soc. Am.
,
136
(
6
), pp.
2926
2934
.
29.
Langfeldt
,
F.
,
Riecken
,
J.
,
Gleine
,
W.
, and
von Estorff
,
O.
,
2016
, “
Analytical Model for Low-Frequency Transmission Loss Calculation of Membranes Loaded With Arbitrarily Shaped Masses
,”
J. Sound Vib.
,
349
, pp.
315
329
.
30.
Naify
,
C. J.
,
Chang
,
C. M.
,
McKnight
,
G.
, and
Nutt
,
S.
,
2012
, “
Scaling of Membrane-Type Locally Resonant Acoustic Metamaterial Arrays
,”
J. Acoust. Soc. Am.
,
132
(
4
), pp.
2784
2792
.
31.
Naify
,
C. J.
,
Chang
,
C. M.
,
McKnight
,
G.
, and
Nutt
,
S.
,
2011
, “
Transmission Loss of Membrane-Type Acoustic Metamaterials With Coaxial Ring Masses
,”
Appl. Phys.
,
110
(
12
), p.
124903
.
32.
Chen
,
J. S.
, and
Kao
,
D. W.
,
2016
, “
Sound Attenuation of Membranes Loaded With Square Frame-Shaped Masses
,”
Math. Probl. Eng.
,
2016
, p.
1740236
.
33.
Szilard
,
R.
,
1974
,
Theory and Analysis of Plates: Classical and Numerical Methods
,
Prentice Hall Press
,
Englewood Cliffs, NJ
.
34.
Soedel
,
W.
,
1981
,
Vibrations of Shells and Plates
,
Marcel Dekker
,
New York
.
35.
Gere
,
J. M.
,
2001
,
Mechanics of Materials
,
5th ed.
,
Brooks/Cole
,
Pacific Grove, CA
.
36.
Callister
,
W. D.
, Jr.
,
2007
,
Materials Science and Engineering: An Introduction
,
7th ed.
,
Wiley
,
New York
.
You do not currently have access to this content.