Benefits of a functionally graded core increasing wrinkling stability of sandwich panels have been demonstrated in a recent paper (Birman, V., and Vo, N., 2017, “Wrinkling in Sandwich Structures With a Functionally Graded Core,” ASME J. Appl. Mech., 84(2), p. 021002), where a several-fold increase in the wrinkling stress was achieved, without a significant weight penalty, using a stiffer core adjacent to the facings. In this paper, wrinkling is analyzed in case where the facings are subject to biaxial compression and/or in-plane shear loading, and the core is arbitrary graded through the thickness. Two issues addressed are the effect of biaxial or in-plane shear loads on wrinkling stability of panels with both graded and ungraded core, and the verification that functional grading of the core remains an effective tool increasing wrinkling stability under such two-dimensional (2D) loads. As follows from the study, biaxial compression and in-plane shear cause a reduction in the wrinkling stress compared to the case of a uniaxial compression in all grading scenarios. Accordingly, even sandwich panels whose mode of failure under uniaxial compression was global buckling, the loss of strength in the facings or core crimpling may become vulnerable to wrinkling under 2D in-plane loading. It is demonstrated that a functionally graded core with the material distributed to increase the local stiffness in the interface region with the facings is effective in preventing wrinkling under arbitrary in-plane loads compared to the equal weight homogeneous core.

References

References
1.
Gough
,
G. S.
,
Elam
,
C. F.
,
Tipper, G. H.
, and
deBruyne
,
N. A.
,
1940
, “
The Stabilization of a Thin Sheet by a Continuous Support Medium
,”
J. R. Aeronaut. Soc.
,
44
(349), pp.
12
43
.
2.
Hoff
,
N. J.
, and
Mautner
,
S. E.
,
1945
, “
The Buckling of Sandwich-Type Panels
,”
J. Aeronaut. Sci.
,
12
(3), pp.
285
297
.
3.
Plantema
,
F. J.
,
1966
,
Sandwich Construction
,
Pergamon Press
,
Oxford, UK
.
4.
Allen
,
H. G.
,
1969
,
Analysis and Design of Structural Sandwich Panels
,
Pergamon Press
,
Oxford, UK
.
5.
Vonach
,
W. K.
, and
Rammerstorfer
,
F. G.
,
2001
, “
A General Approach to the Wrinkling Instability of Sandwich Plates
,”
Struct. Eng. Mech.
,
12
(
4
), pp.
363
376
.
6.
Vonach
,
W. K.
, and
Rammerstorfer
,
F. G.
,
2000
, “
Wrinkling of Thick Orthotropic Sandwich Plates Under General Loading Conditions
,”
Arch. Appl. Mech.
,
70
(
5
), pp.
338
348
.
7.
Vonach
,
W. K.
, and
Rammerstorfer
,
F. G.
,
2000
, “
Effects of in-Plane Core Stiffness on the Wrinkling Behavior of Thick Sandwiches
,”
Acta Mech.
,
141
(
1
), pp.
1
10
.
8.
Gdoutos
,
E. E.
,
Daniel
,
I. M.
, and
Wang
,
K. A.
,
2003
, “
Compression Facing Wrinkling of Composite Sandwich Structures
,”
Mech. Mater.
,
35
(
3–6
), pp.
511
522
.
9.
Kardomateas
,
G. A.
,
2005
, “
Wrinkling of Wide Sandwich Panels/Beams With Orthotropic Phases by an Elasticity Approach
,”
ASME J. Appl. Mech.
,
72
(
6
), pp.
818
825
.
10.
Birman
,
V.
, and
Bert
,
C. W.
,
2004
, “
Wrinkling of Composite-Facing Sandwich Panels Under Biaxial Loading
,”
J. Sandwich Struct. Mater.
,
6
(
3
), pp.
217
237
.
11.
Birman
,
V.
,
2004
, “
Thermomechanical Wrinkling in Composite Sandwich Structures
,”
AIAA J.
,
42
(
7
), pp.
1474
1479
.
12.
Birman
,
V.
,
2005
, “
Thermally Induced Bending and Wrinkling in Large Aspect Ratio Sandwich Panels
,”
Compos. Part A: Appl. Sci. Manuf.
,
36
(
10
), pp.
1412
1420
.
13.
Birman
,
V.
,
2004
, “
Dynamic Wrinkling in Sandwich Beams
,”
Compos. Part B: Eng.
,
35
(6–8), pp.
665
672
.
14.
Lim
,
J. Y.
, and
Bart-Smith
,
H.
,
2015
, “
An Analytical Model for the Face Wrinkling Failure Prediction of Metallic Corrugated Core Sandwich Columns in Dynamic Compression
,”
Int. J. Mech. Sci.
,
92
, pp.
290
303
.
15.
Noor
,
A. K.
,
Burton
,
W. S.
, and
Bert
,
C. W.
,
1996
, “
Computational Models for Sandwich Panels and Shells
,”
Appl. Mech. Rev.
,
49
(
3
), pp.
155
199
.
16.
Sokolinsky
,
V.
, and
Frostig
,
Y.
,
2000
, “
Branching Behavior in the Nonlinear Response of Sandwich Panels With a Transversely Flexible Core
,”
Int. J. Solids Struct.
,
37
(
40
), pp.
5745
5772
.
17.
Frostig
,
Y.
,
2011
, “
On Wrinkling of a Sandwich Panel With a Compliant Core and Self-Equilibrated Loads
,”
J. Sandwich Struct. Mater.
,
13
(
6
), pp.
663
679
.
18.
Hohe
,
J.
,
Librescu
,
L.
, and
Oh
,
S. Y.
,
2006
, “
Dynamic Buckling of Flat and Curved Sandwich Panels With Transversely Compressible Core
,”
Compos. Struct.
,
74
(
1
), pp.
10
24
.
19.
Hohe
,
J.
, and
Librescu
,
L.
,
2008
, “
Recent Results on the Effect of the Transverse Core Compressibility on the Static and Dynamic Response of Sandwich Structures
,”
Compos. Part B: Eng.
,
39
(
1
), pp.
108
119
.
20.
Phan
,
C. N.
,
Bailey
,
N. W.
,
Kardomateas
,
G. A.
, and
Battley
,
M. A.
,
2012
, “
Wrinkling of Sandwich Wide Panels/Beams Based on the Extended High-Order Sandwich Panel Theory: Formulation, Comparison With Elasticity and Experiments
,”
Arch. Appl. Mech.
,
82
(
10–11
), pp.
1585
1599
.
21.
SSC,
2005
, “Fire Degradation, Failure Prediction and Qualification Methods for Fiber Composites,” Ship Structure Committee, Washington, DC, Report No.
SSC-441
.
22.
Birman
,
V.
,
Keil
,
T.
, and
Hosder
,
S.
,
2013
, “
Functionally Graded Materials in Engineering
,”
Structural Interfaces and Attachments in Biology
,
S.
Thomopoulos
,
V.
Birman
, and
G. M.
Genin
, eds.,
Springer
,
New York
, pp.
19
41
.
23.
Suresh
,
S.
, and
Mortensen
,
A.
,
1998
,
Fundamentals of Functionally Graded Materials: Processing and Thermomechanical Behaviour of Graded Metals and Metal-Ceramic Composites
,
IOM Communications, Ltd
.,
London
.
24.
Miyamoto
,
Y.
,
1999
,
Functionally Graded Materials: Design, Processing and Applications
,
Kluwer Academic Publishers
,
Boston, MA
.
25.
Birman
,
V.
, and
Byrd
,
L. W.
,
2007
, “
Modeling and Analysis of Functionally Graded Materials and Structures
,”
Appl. Mech. Rev.
,
60
(5), pp.
195
216
.
26.
Birman
,
V.
,
2014
, “
Functionally Graded Materials and Structures
,”
Encyclopedia of Thermal Stresses
,
R. B.
Hetnarski
, ed.,
Springer
,
Dordrecht, The Netherlands
, pp.
1858
1864
.
27.
Paulino
,
G. H.
,
2008
, “
Multiscale and Functionally Graded Materials
,”
International Conference on FGM IX
, Oahu Island, HI, Oct. 15–18.
28.
Kawasaki
,
A.
,
Niino
,
M.
, and
Kumakawa
,
A.
,
2010
,
Multiscale, Multifunctional and Functionally Graded Materials
, Vol. 632, Trans Tech, Zürich, Switzerland.
29.
Birman
,
V.
, and
Vo
,
N.
,
2017
, “
Wrinkling in Sandwich Structures With a Functionally Graded Core
,”
ASME J. Appl. Mech.
,
84
(
2
), p.
021002
.
30.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids, Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
31.
Carlsson
,
L. A.
, and
Kardomateas
,
G. A.
,
2011
,
Structural and Failure Mechanics of Sandwich Composites
,
Springer
,
Dordrecht, The Netherlands
.
32.
Tuwair
,
H.
,
Volz
,
J.
,
ElGawady
,
M. A.
,
Chandrashekhara
,
K.
, and
Birman
,
V.
,
2016
, “
Modeling and Analysis of GFRP Bridge Deck Panels Filled With Polyurethane Foam
,”
J. Bridge Eng.
,
21
(
5
), p.
04016012
.
33.
Gibson
,
R. F.
,
2007
,
Principles of Composite Material Mechanics
,
CRC Press
,
Boca Raton, FL
.
34.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1982
, “
The Mechanics of Three-Dimensional Cellular Materials
,”
Proc. R. Soc. London, Ser. A
,
382
(
1782
), pp.
43
59
.
You do not currently have access to this content.