Piezoresponse force microscopy (PFM) extends the conventional nano-indentation technique and has become one of the most widely used methods to determine the properties of small scale piezoelectric materials. Its accuracy depends largely on whether a reliable analytical model for the corresponding properties is available. Based on the coupled theory and the image charge model, a rigorous analysis of the film thickness effects on the electromechanical behaviors of PFM for piezoelectric films is presented. When the film is very thick, analytical solutions for the surface displacement, electric potential, image charge, image charge distance, and effective piezoelectric coefficient are obtained. For the infinitely thin (IT) film case, the corresponding closed-form solutions are derived. When the film is of finite thickness, a single parameter semi-empirical formula agreeing well with the numerical results is proposed for the effective piezoelectric coefficient. It is found that if the film thickness effect is not taken into account, PFM can significantly underestimate the effective piezoelectric coefficient compared to the half space result. The effects of the ambient dielectric property on PFM responses are also explored. Humidity reduces the surface displacement, broadens the radial distribution peak, and greatly enlarges the image charge, resulting in reduced effective piezoelectric coefficient. The proposed semi-empirical formula is also suitable to describe the thickness effects on the effective piezoelectric coefficient of thin films in humid environment. The obtained results can be used to quantitatively interpret the PFM signals and enable the determination of intrinsic piezoelectric coefficient through PFM measurement for thin films.

References

References
1.
Mason
,
W. P.
,
1950
,
Piezoelectric Crystals and Their Application to Ultrasonics
,
David Van Nostrand
,
Princeton, NJ
.
2.
Uchino
,
K.
,
1997
,
Piezoelectric Actuators and Ultrasonic Motors
,
Kluwer Academic Publishers
,
Boston, MA
.
3.
Alexe
,
M.
, and
Gruverman
,
A.
,
2004
,
Nanoscale Characterisation of Ferroelectric Materials
, Springer-Verlag, Berlin.
4.
Fu
,
J.
, and
Li
,
F.-X.
,
2016
, “
A Comparative Study of Piezoelectric Unimorph and Multilayer Actuators as Stiffness Sensors Via Contact Resonance
,”
Acta Mech. Sin.
,
32
(
4
), pp.
633
639
.
5.
Bonnell
,
D. A.
,
Kalinin
,
S. V.
,
Kholkin
,
A. L.
, and
Gruverman
,
A.
,
2009
, “
Piezoresponse Force Microscopy: A Window Into Electromechanical Behavior at the Nanoscale
,”
Mrs. Bull.
,
34
(
9
), pp.
648
657
.
6.
Kalinin
,
S. V.
,
Rodriguez
,
B. J.
,
Jesse
,
S.
,
Seal
,
K.
,
Proksch
,
R.
,
Hohlbauch
,
S.
,
Revenko
,
I.
,
Thompson
,
G. L.
, and
Vertegel
,
A. A.
,
2007
, “
Towards Local Electromechanical Probing of Cellular and Biomolecular Systems in a Liquid Environment
,”
Nanotechnol.
,
18
(
42
), p. 424020.
7.
Isakov
,
D. V.
,
Gomes
,
E. M.
,
Almeida
,
B. G.
,
Bdikin
,
I. K.
,
Martins
,
A. M.
, and
Kholkin
,
A. L.
,
2010
, “
Piezoresponse Force Microscopy Studies of the Triglycine Sulfate-Based Nanofibers
,”
J. Appl. Phys.
,
108
(4), p. 042011.
8.
Liu
,
X.
,
Kuang
,
X. L.
,
Xu
,
S. X.
, and
Wang
,
X. H.
,
2017
, “
High-Sensitivity Piezoresponse Force Microscopy Studies of Single Polyvinylidene Fluoride Nanofibers
,”
Mater. Lett.
,
191
, pp.
189
192
.
9.
Jungk
,
T.
,
Hoffmann
,
A.
, and
Soergel
,
E.
,
2007
, “
Challenges for the Determination of Piezoelectric Constants With Piezoresponse Force Microscopy
,”
Appl. Phys. Lett.
,
91
(
25
), p. 253511.
10.
Liu
,
Y. M.
,
Zhang
,
Y. H.
,
Chow
,
M. J.
,
Chen
,
Q. N.
, and
Li
,
J. Y.
,
2012
, “
Biological Ferroelectricity Uncovered in Aortic Walls by Piezoresponseforce Microscopy
,”
Phys. Rev. Lett.
,
108
(
7
), pp.
078103
078107
.
11.
Jungk
,
T.
,
Hoffmann
,
A.
, and
Soergel
,
E.
,
2009
, “
New Insights Into Ferroelectric Domain Imaging With Piezoresponse Force Microscopy
,”
Ferroelectric Crystals for Photonic Applications
, P. Ferraro, S. Grilli, and P. De Natale, eds., Springer, Berlin, pp.
209
228
.
12.
Soergel
,
E.
,
2011
, “
Piezoresponse Force Microscopy (PFM)
,”
J. Phys. D: Appl. Phys.
,
44
(
46
), p.
464003
.
13.
Serban
,
L.
,
Mark
,
S.
, and
Markys
,
G. C.
,
2014
, “
Quantification of Electromechanical Coupling Measured With Piezoresponse Force Microscopy
,”
J. Appl. Phys.
,
116
(
6
), p.
066806
.
14.
Momeni
,
K.
,
Asthana
,
A.
,
Prasad
,
A.
,
Yap
,
Y. K.
, and
Shahbazian-Yassar
,
R.
,
2012
, “
Structural Inhomogeneity and Piezoelectric Enhancement in ZnO Nanobelts
,”
Appl. Phys. A
,
109
(
1
), pp.
95
100
.
15.
Felten
,
F.
,
Schneider
,
G. A.
,
Muñoz Saldaña
,
J.
, and
Kalinin
,
S. V.
,
2004
, “
Modeling and Measurement of Surface Displacements in BaTiO3 Bulk Material in Piezoresponse Force Microscopy
,”
J. Appl. Phys.
,
96
(
1
), pp.
563
568
.
16.
Pan
,
K.
,
Liu
,
Y. M.
,
Liu
,
Y. Y.
, and
Li
,
J. Y.
,
2013
, “
The Electromechanics of Piezoresponse Force Microscopy for a Transversely Isotropic Piezoelectric Medium
,”
Acta Mater.
,
61
(
18
), pp.
7020
7033
.
17.
Kalinin
,
S. V.
,
Eliseev
,
E. A.
, and
Morozovska
,
A. N.
,
2006
, “
Materials Contrast in Piezoresponse Force Microscopy
,”
Appl. Phys. Lett.
,
88
(
23
), p.
232904
.
18.
Kalinin
,
S. V.
, and
Bonnell
,
D. A.
,
2002
, “
Imaging Mechanism of Piezoresponse Force Microscopy of Ferroelectric Surfaces
,”
Phys. Rev. B
,
65
(
12
), pp.
125408
125418
.
19.
Kalinin
,
S. V.
,
Karapetian
,
E.
, and
Kachanov
,
M.
,
2004
, “
Nanoelectromechanics of Piezoresponseforce Microscopy: Contact Properties, Fields Below the Surface and Polarization Switching
,”
Phys. Rev. B
,
70
(
18
), pp.
3352
3359
.
20.
Yang
,
F.
, and
Li
,
J. C. M.
,
2008
,
Micro and Nanomechanical Testing of Materials and Devices
,
Springer
,
New York
.
21.
Wang
,
J. H.
, and
Chen
,
C. Q.
,
2011
, “
A Coupled Analysis of Piezoresponse Force Microscopy Signals
,”
Appl. Phys. Lett.
,
99
(
17
), p.
171913
.
22.
Karapetian
,
E.
,
Sevostianov
,
I.
, and
Kachanov
,
K.
,
2000
, “
Point Force and Point Electric Charge in Infinite and Semi-Infinite Transversely Isotropic Piezoelectric Solids
,”
Philos. Mag. B
,
80
(
3
), pp.
331
359
.
23.
Morozovska
,
A. N.
,
Eliseev
,
E. A.
, and
Kalinin
,
S. V.
,
2007
, “
The Piezoresponse Force Microscopy of Surface Layers and Thin Films: Effective Response and Resolution Function
,”
J. Appl. Phys.
,
102
(
7
), pp.
074105
074116
.
24.
Morozovska
,
A. N.
,
Svechnikov
,
S. V.
,
Eliseev
,
E. A.
, and
Kalinin
,
S. V.
,
2007
, “
Extrinsic Size Effect in Piezoresponse Force Microscopy of Thin Films
,”
Phys. Rev. B
,
76
(
5
), pp.
054123
054127
.
25.
Ganpule
,
C. S.
,
Nagarjan
,
V.
, and
Li
,
H.
,
2000
, “
Role of 90° Domains in Lead Zirconatetitanate Thin Films
,”
Appl. Phys. Lett.
,
77
(
2
), p.
292
.
26.
Agronin
,
A.
,
Molotskii
,
M.
, and
Rosenwaks
,
Y.
,
2005
, “
Nanoscale Piezoelectric Coefficient Measurements in Ionic Conducting Ferroelectrics
,”
J. Appl. Phys.
,
97
(
8
), pp.
084312
084317
.
27.
Giannakopoulos
,
A. E.
, and
Suresh
,
S.
,
1999
, “
Theory of Indentation of Piezoelectric Materials
,”
Acta Mater.
,
47
(
7
), pp.
2153
2164
.
28.
Wang
,
J. H.
,
Chen
,
C. Q.
, and
Lu
,
T. J.
,
2008
, “
Indentation Responses of Piezoelectric Films
,”
J. Mech. Phy. Solids
,
56
(
12
), pp.
3331
3351
.
29.
Pan
,
K.
,
Liu
,
Y. M.
,
Peng
,
J. L.
, and
Liu
,
Y. Y.
,
2013
, “
Double-Tip Piezoresponse Force Microscopy for Quantitative Measurement of the Piezoelectric Coefficient at the Nanoscale
,”
Europhys. Lett.
,
104
(
6
), p.
67001
.
30.
Ferri
,
A.
,
Detalle
,
M.
,
Blach
,
J. F.
,
Warenghem
,
M.
,
Remiens
,
D.
, and
Desfeux
,
R.
,
2011
, “
Thickness Effect on Nanoscale Electromechanical Activity in Pb(Mg1/3Nb2/3)O3-PbTiO3 Thin Films Studied by Piezoresponse Force Microscopy
,”
J. Appl. Phys.
,
110
(
10
), pp.
104101
104106
.
31.
Balke
,
N.
,
Jesse
,
S.
,
Chu
,
Y. H.
, and
Kalinin
,
S. V.
,
2012
, “
High-Frequency Electromechanical Imaging of Ferroelectrics in a Liquid Environment
,”
ACS Nano
,
6
(
6
), pp.
5559
5565
.
32.
Mirman
,
B.
, and
Kalinin
,
S. V.
,
2008
, “
Resonance Frequency Analysis for Surface-Coupled Atomic Forcemicroscopy Cantilever in Ambient and Liquid Environments
,”
Appl. Phys. Lett.
,
92
(
8
), p.
083102
.
33.
Rodriguez
,
B. J.
,
Jesse
,
S.
,
Habelitz
,
S.
,
Proksch
,
R.
, and
Kalinin
,
S. V.
,
2009
, “
Intermittent Contact Mode Piezoresponse Force Microscopy in a Liquid Environment
,”
Nanotechnol.
,
20
(
19
), p.
195701
.
34.
Li
,
C.
,
Cao
,
Y. Y.
,
Bai
,
Y. H.
,
Li
,
A. D.
,
Zhang
,
S. T.
, and
Wu
,
D.
,
2015
, “
Electromechanical Response From LaAlO3/SrTiO3 Heterostructures
,”
ACS Appl. Mater. Interfaces
,
7
(
19
), pp.
10146
10151
.
35.
Giannakopoulos
,
A. E.
,
1999
, “
Strength Analysis of Spherical Indentation of Piezoelectric Materials
,”
ASME J. Appl. Mech.
,
67
(
2
), pp.
409
416
.
36.
Chen
,
W. Q.
,
Pan
,
E.
,
Wang
,
H. M.
, and
Zhang
,
C. Z.
,
2010
, “
Theory of Indentation on Multiferroic Composite Materials
,”
J. Mech. Phy. Solids
,
58
(
10
), pp.
1524
1551
.
37.
Zhou
,
Y. T.
, and
Zhong
,
Z.
,
2014
, “
Frictional Indentation of Anisotropic Magneto-Electro-Elastic Materials by a Rigid Indenter
,”
ASME J. Appl. Mech.
,
81
(
7
), p.
071001
.
38.
Li
,
X. Y.
,
Wu
,
F.
,
Jin
,
X.
, and
Chen
,
W. Q.
,
2015
, “
3D Coupled Field in a Transversely Isotropic Magneto-Electro-Elastic Half Space Punched by an Elliptic Indenter
,”
J. Mech. Phy. Solids
,
75
, pp.
1
44
.
39.
Yang
,
F.
,
2008
, “
Analysis of the Axisymmetric Indentation of a Semi-Infinite Piezoelectricmaterial: The Evaluation of the Contact Stiffness and the Effective Piezoelectric Constant
,”
J. Appl. Phys.
,
103
(
7
), p.
074115
.
40.
Chen
,
W. Q.
,
2015
, “
Some Recent Advances in 3D Crack and Contact Analysis of Elastic Solids With Transverse Isotropy and Multifield Coupling
,”
Acta Mech. Sin.
,
31
(
5
), pp.
601
626
.
41.
Abplanalp
,
M.
, and
Günter
,
P.
,
2001
, “
Influence of Stress on the Domain Formation in Barium-Titanate Films
,”
Ferroelectrics
,
258
(
1
), pp.
3
12
.
42.
Zavala
,
G.
,
Fendler
,
J. H.
, and
Trolier-Mckinstry
,
S.
,
1997
, “
Characterization of Ferroelectric Lead Zirconate Titanate Films by Scanning Force Microscopy
,”
J. Appl. Phys.
,
81
(
11
), pp.
7480
7491
.
43.
Ning
,
X. G.
,
Lovell
,
M.
, and
Slaughter
,
W. S.
,
2006
, “
Asymptotic Solutions for Axisymmetric Contact of a Thin, Transversely Isotropic Elastic Layer
,”
Wear
,
260
(
7–8
), pp.
693
698
.
44.
Lefki
,
K.
, and
Dormans
,
G. J. M.
,
1994
, “
Measurement of Piezoelectric Coefficients of Ferroelectric Thin Films
,”
J. Appl. Phys.
,
76
(
3
), pp.
1764
1767
.
45.
Wang
,
R. J.
,
1983
,
Acoustic Materials Manual
,
Science Press
,
Beijing, China
(in Chinese).
You do not currently have access to this content.