The analytical model of a mechanism for regulating the thermally induced axial force and displacement in a fixed–fixed microbeam is presented in this article. The mechanism which consists of a set of parallel chevron beams replaces one of the fixed ends of the microbeam. The thermomechanical behavior of the system is modeled using Castigliano’s theorem. The effective coefficient of thermal expansion is used in the analytical model. The analytical model takes into account both the axial and bending deformations of the chevron beams. The model provides a closed-form equation to determine the thermally induced axial force and displacement in the microbeam. In addition, the model is used to derive the equations for the sensitivities of the microbeam’s axial force and displacement to the variations of the design parameters involved. Moreover, the model produces the stiffness of the chevron beams. The effect of the stiffness of the chevron beams on the dynamic behavior of the microbeam is discussed. The analytical model is verified by finite element modeling using a commercially available software package. Using the analytical model, two special cases are highlighted: a system with thermally insensitive axial force and a system with thermally insensitive axial displacement. The main application of the model presented in this article is in the design of sensors and resonators that require robustness against changes of temperature in the environment. The analytical model and the sensitivity equations can be easily integrated into optimization algorithms.

References

1.
Tilmans
,
H. A. C.
,
Elwenspoek
,
M.
, and
Fluitman
,
J. H. J.
,
1992
, “
Micro Resonant Force Gauges
,”
Sens. Actuators, A
,
30
(
1–2
), pp.
35
53
.
2.
Eaton
,
W.
, and
Smith
,
J.
,
1997
, “
Micromachined Pressure Sensors: Review and Recent Developments
,”
Smart Mater. Struct.
,
6
(
5
), pp.
530
539
.
3.
Hassanpour
,
P. A.
,
Cleghorn
,
W. L.
,
Esmailzadeh
,
E.
, and
Mills
,
J. K.
,
2011
, “
Experimental Measurement of Resonance Frequencies of Asymmetric Micro-Bridge Resonators
,”
J. Intell. Mater. Syst. Struct.
,
22
(
2
), pp.
127
136
.
4.
Roundy
,
S.
,
Wright
,
P. K.
, and
Rabaey
,
J.
,
2003
, “
A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes
,”
Comput. Commun.
,
26
(
11
), pp.
1131
1144
.
5.
DuToit
,
N. E.
,
Wardle
,
B. L.
, and
Kim
,
S. G.
,
2005
, “
Design Considerations for MEMS-Scale Piezoelectric Mechanical Vibration Energy Harvesters
,”
Integr. Ferroelectr.
,
71
(
1
), pp.
121
160
.
6.
Beeby
,
S. P.
,
Tudor
,
M. J.
, and
White
,
N. M.
,
2006
, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Meas. Sci. Technol.
,
17
(
12
), pp.
R175
R195
.
7.
Madou
,
M. J.
,
2002
,
Fundamentals of Microfabrication
,
CRC Press
, Boca Raton, FL.
8.
Karnovsky
,
I.
, and
Lebed
,
O.
,
2004
,
Nonclassical Vibrations of Arches and Beams: Eigenvalues and Eigenfunctions
,
McGraw-Hill
,
New York
.
9.
Harder
,
T. A.
,
Yao
,
T.-J.
,
He
,
Q.
,
Shih
,
C.-Y.
, and
Tai
,
Y.-C.
,
2002
, “
Residual Stress in Thin-Film Parylene-C
,” 15th IEEE International Conference on Micro Electro Mechanical Systems (
MEMS
), Las Vegas, NV, Jan. 20–24, pp. 435–438.
10.
Sundaresan
,
K.
,
Ho
,
G. K.
,
Pourkamali
,
S.
, and
Ayazi
,
F.
,
2007
, “
Electronically Temperature Compensated Silicon Bulk Acoustic Resonator Reference Oscillators
,”
IEEE J. Solid-State Circuits
,
42
(
6
), pp.
1425
1434
.
11.
Seo
,
J. H.
,
Demirci
,
K. S.
,
Byun
,
A.
,
Truax
,
S.
, and
Brand
,
O.
,
2008
, “
Temperature Compensation Method for Resonant Microsensors Based on a Controlled Stiffness Modulation
,”
J. Appl. Phys.
,
104
(
1
), p.
014911
.
12.
Jha
,
C. M.
,
Hopcroft
,
M. A.
,
Chandorkar
,
S. A.
,
Salvia
,
J. C.
,
Agarwal
,
M.
,
Candler
,
R. N.
,
Melamud
,
R.
,
Kim
,
B.
, and
Kenny
,
T. W.
,
2008
, “
Thermal Isolation of Encapsulated MEMS Resonators
,”
J. Microelectromech. Syst.
,
17
(
1
), pp.
175
184
.
13.
Salvia
,
J.
,
Messana
,
M.
,
Ohline
,
M.
,
Hopcroft
,
M.
,
Melamud
,
R.
,
Chandorkar
,
S.
,
Lee
,
H.
,
Bahl
,
G.
,
Murmann
,
B.
, and
Kenny
,
T.
,
2008
, “
Exploring the Limits and Practicality of Q-Based Temperature Compensation for Silicon Resonators
,” IEEE International Electron Devices Meeting (
IEDM
), San Francisco, CA, Dec. 15–17, pp.
1
4
.
14.
Kim
,
B.
,
Hopcroft
,
M. A.
,
Candler
,
R. N.
,
Jha
,
C. M.
,
Agarwal
,
M.
,
Melamud
,
R.
,
Chandorkar
,
S. A.
,
Yama
,
G.
, and
Kenny
,
T. W.
,
2008
, “
Temperature Dependence of Quality Factor in MEMS Resonators
,”
J. Microelectromech. Syst.
,
17
(
3
), pp.
755
766
.
15.
Hopcroft
,
M. A.
,
Kim
,
B.
,
Chandorkar
,
S.
,
Melamud
,
R.
,
Agarwal
,
M.
,
Jha
,
C. M.
,
Bahl
,
G.
,
Salvia
,
J.
,
Mehta
,
H.
,
Lee
,
H. K.
,
Candler
,
R. N.
, and
Kenny
,
T. W.
,
2007
, “
Using the Temperature Dependence of Resonator Quality Factor as a Thermometer
,”
Appl. Phys. Lett.
,
91
(
1
), p.
013505
.
16.
Azevedo
,
R. G.
,
Huang
,
W.
,
O’Reilly
,
O. M.
, and
Pisano
,
A. P.
,
2008
, “
Dual-Mode Temperature Compensation for a Comb-Driven MEMS Resonant Strain Gauge
,”
Sens. Actuators, A
,
144
(
2
), pp.
374
380
.
17.
Koskenvuori
,
M.
,
Kaajakari
,
V.
,
Mattila
,
T.
, and
Tittonen
,
I.
,
2008
, “
Temperature Measurement and Compensation Based on Two Vibrating Modes of a Bulk Acoustic Mode Microresonator
,”
21st IEEE International Conference on Micro Electro Mechanical Systems
(
MEMS
), Wuhan, China, Jan. 13–17, pp.
78
81
.
18.
Naeli
,
K.
, and
Brand
,
O.
,
2009
, “
Cancellation of Environmental Effects in Resonant Mass Sensors Based on Resonance Mode and Effective Mass
,”
Rev. Sci. Instrum.
,
80
(
6
), p.
063903
.
19.
Wong
,
C.-L.
, and
Palaniapan
,
M.
,
2009
, “
Phonon Detection Technique for the Study of the Temperature Coefficient of Resonance Frequency in Clamped–Clamped Beam Resonators
,”
J. Micromech. Microeng.
,
19
(
6
), p.
065021
.
20.
Bendida
,
S.
,
Koning
,
J. J.
,
Bontemps
,
J. J. M.
,
van Beek
,
J. T. M.
,
Wu
,
D.
,
van Gils
,
M. A. J.
, and
Nath
,
S.
,
2008
, “
Temperature Stability of a Piezoresistive MEMS Resonator Including Self-Heating
,”
Microelectron. Reliab.
,
48
(
8–9
), pp.
1227
1231
.
21.
Veris
,
J.
,
1996
, “
Temperature Compensation of Silicon Resonant Pressure Sensor
,”
Sens. Actuators, A
,
57
(
3
), pp.
179
182
.
22.
Han
,
J.
,
Zhu
,
C.
,
Liu
,
J.
, and
Li
,
P.
,
2005
, “
A Novel Temperature-Compensating Structure for Micromechanical Bridge Resonator
,”
J. Micromech. Microeng.
,
15
(
4
), pp.
702
705
.
23.
Singamaneni
,
S.
,
LeMieux
,
M. C.
,
Lang
,
H. P.
,
Gerber
,
C.
,
Lam
,
Y.
,
Zauscher
,
S.
,
Datskos
,
P. G.
,
Lavrik
,
N. V.
,
Jiang
,
H.
,
Naik
,
R. R.
,
Bunning
,
T. J.
, and
Tsukruk
,
V. V.
,
2008
, “
Bimaterial Microcantilevers as a Hybrid Sensing Platform
,”
Adv. Mater.
,
20
(
4
), pp.
653
680
.
24.
Melamud
,
R.
,
Kim
,
B.
,
Chandorkar
,
S. A.
,
Hopcroft
,
M. A.
,
Agarwal
,
M.
,
Jha
,
C. M.
, and
Kenny
,
T. W.
,
2007
, “
Temperature-Compensated High-Stability Silicon Resonators
,”
Appl. Phys. Lett.
,
90
(
24
), p.
244107
.
25.
Melamud
,
R.
,
Chandorkar
,
S. A.
,
Kim
,
B.
,
Lee
,
H. K.
,
Salvia
,
J. C.
,
Bahl
,
G.
,
Hopcroft
,
M. A.
, and
Kenny
,
T. W.
,
2009
, “
Temperature-Insensitive Composite Micromechanical Resonators
,”
J. Microelectromech. Syst.
,
18
(
6
), pp.
1409
1419
.
26.
Lin
,
C. M.
,
Yen
,
T. T.
,
Felmetsger
,
V. V.
,
Hopcroft
,
M. A.
,
Kuypers
,
J. H.
, and
Pisano
,
A. P.
,
2010
, “
Thermally Compensated Aluminum Nitride Lamb Wave Resonators for High Temperature Applications
,”
Appl. Phys. Lett.
,
97
(
8
), p. 083501.
27.
Lin
,
C. M.
,
Yen
,
T. T.
,
Lai
,
Y. J.
,
Felmetsger
,
V. V.
,
Hopcroft
,
M. A.
,
Kuypers
,
J. H.
, and
Pisano
,
A. P.
,
2010
, “
Temperature-Compensated Aluminum Nitride Lamb Wave Resonators
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
57
(
3
), pp.
524
532
.
28.
Hassanpour
,
P. A.
,
Nieva
,
P. M.
, and
Khajepour
,
A.
,
2010
, “
Stochastic Analysis of a Nonlinear MEMS Force Sensor
,”
ASME
Paper No. DETC2010-28899.
29.
[29]
Hassanpour
,
P. A.
,
Nieva
,
P. M.
, and
Khajepour
,
A.
,
2011
, “
Stochastic Analysis of a Novel Force Sensor Based on Bifurcation of a Micro-Structure
,”
J. Sound Pulm.
,
330
(
23
), pp.
5753
5768
.
30.
Hassanpour
,
P. A.
,
Nieva
,
P. M.
, and
Khajepour
,
A.
,
2012
, “
A Passive Mechanism for Thermal Stress Regulation in Micro-Machined Beam-Type Structures
,”
Microsyst. Technol.
,
18
(
5
), pp.
543
556
.
31.
Hassanpour
,
P. A.
,
Nieva
,
P. M.
, and
Khajepour
,
A.
,
2011
, “
Thermally-Robust Asymmetric Resonators for Energy Harvesting Applications
,”
AIP Conf. Proc.
,
1368
, pp.
61
64
.
32.
Enikov
,
E.
,
Kedar
,
S.
, and
Lazarov
,
K.
,
2005
, “
Analytical Model for Analysis and Design of V-Shaped Thermal Microactuators
,”
J. Microelectromech. Syst.
,
14
(
4
), pp.
788
798
.
33.
Hibbeler
,
R. C.
,
2005
,
Mechanics of Materials
,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.