Interfaces such as grain boundaries are ubiquitous in crystalline materials and have provided a fertile area of research over decades. Their importance stems from the numerous critical phenomena associated with them, such as grain boundary sliding, migration, and interaction with other defects, that govern the mechanical properties of materials. Although these crystalline interfaces exhibit small out-of-plane fluctuations, statistical thermodynamics of membranes has been effectively used to extract relevant physical quantities such as the interface free energy, grain boundary stiffness, and interfacial mobility. In this perspective, we advance the viewpoint that thermal fluctuations of crystalline interfaces can serve as a computational microscope for gaining insights into the thermodynamic and kinetic properties of grain boundaries and present a rich source of future study.

References

References
1.
Safran
,
S. A.
,
2003
,
Statistical Thermodynamics of Surfaces, Interfaces, and Membranes
,
Westview Press
,
Boulder, CO
.
2.
Nelson
,
D. R.
,
Piran
,
T.
, and
Weinberg
,
S.
,
2004
,
Statistical Mechanics of Membranes and Surfaces
,
World Scientific Publishing
,
Singapore
.
3.
Phillips
,
R.
,
Kondev
,
J.
,
Theriot
,
J.
, and
Garcia
,
H.
,
2012
,
Physical Biology of the Cell
,
Garland Science
,
New York
.
4.
Sethna
,
J. P.
,
2006
,
Statistica Mechanics: Entropy, Order Parameters, and Complexity
,
Oxford University Press
,
New York
.
5.
Helfrich
,
W.
,
1978
, “
Steric Interaction of Fluid Membranes in Multilayer Systems
,”
Z. Naturforsch. A
,
33
(
3
), pp.
305
315
.
6.
Freund
,
L. B.
,
2013
, “
Entropic Pressure Between Biomembranes in a Periodic Stack Due to Thermal Fluctuations
,”
Proc. Natl. Acad. Sci. U.S.A.
,
110
(
6
), pp.
2047
2051
.
7.
Hanlumyuang
,
Y.
,
Liu
,
L. P.
, and
Sharma
,
P.
,
2014
, “
Revisiting the Entropic Force Between Fluctuating Biological Membranes
,”
J. Mech. Phys. Solids
,
63
, pp.
179
186
.
8.
Ahmadpoor
,
F.
,
Liu
,
L. P.
, and
Sharma
,
P.
,
2015
, “
Thermal Fluctuations and the Minimum Electrical Field That Can Be Detected by a Biological Membrane
,”
J. Mech. Phys. Solids
,
78
, pp.
110
122
.
9.
Gompper
,
G.
, and
Kroll
,
D.
,
1992
, “
Edge Correlations of Fluid and Tethered Membranes
,”
J. Phys. I (France)
,
2
(
5
), pp.
663
676
.
10.
Zelisko
,
M.
,
Ahmadpoor
,
F.
,
Gao
,
H.
, and
Sharma
,
P.
,
2017
, “
Determining the Gaussian Modulus and Edge Properties of 2D Materials From Graphene to Lipid Bilayers
,”
Phys. Rev. Lett.
,
119
, p.
068002
.
11.
Los
,
J. H.
,
Katsnelson
,
M. I.
,
Yazyev
,
O. V.
,
Zakharchenko
,
K. V.
, and
Fasolino
,
A.
,
2009
, “
Scaling Properties of Flexible Membranes from Atomistic Simulations: Application to Graphene
,”
Phys. Rev. B
,
80
, p.
121405
.
12.
Gao
,
W.
, and
Huang
,
R.
,
2014
, “
Thermomechanics of Monolayer Graphene: Rippling, Thermal Expansion and Elasticity
,”
J. Mech. Phys. Solids
,
66
, pp.
42
58
.
13.
Ahmadpoor
,
F.
, and
Sharma
,
P.
,
2017
, “
A Perspective on the Statistical Mechanics of 2D Materials
,”
Extreme Mech. Lett.
,
14
, pp.
38
43
.
14.
Hoyt
,
J. J.
,
Trautt
,
Z. T.
, and
Upmanyu
,
M.
,
2010
, “
Fluctuations in Molecular Dynamics Simulations
,”
Math. Comput. Simul.
,
80
(
7
), pp.
1382
1392
.
15.
Hoyt
,
J. J.
,
Asta
,
M.
, and
Karma
,
A.
,
2001
, “
Method for Computing the Anisotropy of the Solid-Liquid Interfacial Free Energy
,”
Phys. Rev. Lett.
,
86
(
24
), pp.
5530
5533
.
16.
Trautt
,
Z. T.
,
Upmanyu
,
M.
, and
Karma
,
A.
,
2006
, “
Interface Mobility From Interface Random Walk
,”
Science
,
314
(
5799
), pp.
632
635
.
17.
Plimpton
,
S. J.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comp. Phys.
,
117
(
1
), pp.
1
19
.
18.
Mishin
,
Y.
,
Mehl
,
M. J.
,
Papaconstantopoulos
,
D. A.
,
Voter
,
A. F.
, and
Kress
,
J. D.
,
2001
, “
Structural Stability and Lattice Defects in Copper: Ab Initio, Tight-Binding, and Embedded-Atom Calculations
,”
Phys. Rev. B
,
63
, p.
224106
.
19.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO—The Open Visualization Tool
,”
Model. Simul. Mater. Sci. Eng.
,
18
, p.
015012
.
20.
Chen
,
D.
, and
Kulkarni
,
Y.
,
2013
, “
Elucidating the Kinetics of Twin Boundaries From Thermal Fluctuations
,”
MRS Commun.
,
3
(
4
), pp.
241
244
.
21.
Karma
,
A.
,
Trautt
,
Z. T.
, and
Mishin
,
Y.
,
2012
, “
Relationship Between Equilibrium Fluctuations and Shear-Coupled Motion of Grain Boundaries
,”
Phys. Rev. Lett.
,
109
, p.
095501
.
22.
Cahn
,
J. W.
,
Mishin
,
Y.
, and
Suzuki
,
A.
,
2006
, “
Coupling Grain Boundary Motion to Shear Deformation
,”
Acta Mater.
,
54
(
19
), pp.
4953
4975
.
23.
Ackland
,
G. J.
,
Tichy
,
G. T.
,
Vitek
,
V. V.
, and
Finnis
,
M. W.
,
1987
, “
Simple N-Body Potentials for the Noble Metals and Nickel
,”
Philos. Mag. A.
,
56
(
6
), pp.
735
756
.
24.
Angelo
,
J. E.
,
Moody
,
N. R.
, and
Baskes
,
M. I.
,
1995
, “
Trapping of Hydrogen to Lattice-Defects in Nickel
,”
Modell. Simul. Mater. Sci. Eng.
,
3
(
3
), p.
289
.
25.
Baskes
,
M. I.
,
Sha
,
X. W.
,
Angelo
,
J. E.
, and
Moody
,
N. R.
,
1997
, “
Trapping of Hydrogen to Lattice Defects in Nickel
,”
Model. Simul. Mater. Sci. Eng.
,
5
, p.
651
.
26.
Deng
,
C.
, and
Schuh
,
A. C.
,
2011
, “
Atomistic Simulation of Slow Grain Boundary Motion
,”
Phy. Rev. Lett
,
106
(
4
), p.
045503
.
27.
Deng
,
C.
, and
Schuh
,
A. C.
,
2011
, “
Diffusive to Ballistic Transition in Grain Boundary Motion Studied by Atomistic Simulations
,”
Phy. Rev. B
,
84
, p.
214102
.
28.
Foiles
,
S. M.
, and
Hoyt
,
J. J.
,
2006
, “
Computation of Grain Boundary Stiffness and Mobility From Boundary Fluctuations
,”
Acta Mater.
,
54
(
2
), pp.
3351
3357
.
29.
Janssens
,
K. G. F.
,
Olmsted
,
D.
, and
Holm
,
E. A.
,
2006
, “
Computing the Mobility of Grain Boundaries
,”
Nat. Mater.
,
5
, pp.
124
127
.
30.
Sun
,
H.
, and
Deng
,
C.
,
2014
, “
Direct Quantification of Solute Effects on Grain Boundary Motion by Atomistic Simulations
,”
Comp. Mater. Sci.
,
93
, pp.
137
143
.
31.
Sun
,
H.
, and
Deng
,
C.
,
2014
, “
Adapted Solute Drag Model for Impurity-Controlled Grain Boundary Motion
,”
J. Mater. Res.
,
29
(
12
), pp.
1369
1375
.
32.
Freund
,
L. B.
,
2012
, “
Fluctuation Pressure on a Bio-Membrane Confined Within a Parabolic Potential Well
,”
Acta Mech. Sin.
,
28
(
4
), pp.
1180
1185
.
33.
Zakharchenko
,
K. V.
,
Los
,
J. H.
,
Katsnelson
,
M. I.
, and
Fasolino
,
A.
,
2010
, “
Atomistic Simulations of Structural and Thermodynamic Properties of Bilayer Graphene
,”
Phys. Rev. B
,
81
(
23
), p.
235439
.
34.
Chen
,
D.
, and
Kulkarni
,
Y.
,
2015
, “
Entropic Interactions Between Fluctuating Twin Boundaries
,”
J. Mech. Phys. Solids
,
84
, pp.
59
71
.
35.
Rickman
,
J. M.
, and
Lesar
,
R.
,
2001
, “
Finite-Temperature Dislocation Interactions
,”
Phy. Rev. B
,
64
(
9
), p.
094106
.
36.
Mendelev
,
M. I.
, and
Srolovitz
,
D. J.
,
2002
, “
Impurity Effects on Grain Boundary Migration
,”
Modell. Simul. Mater. Sci. Eng.
,
10
(6), p.
79
.
37.
Cahn
,
J. W.
,
1962
, “
The Impurity-Drag Effect in Grain Boundary Motion
,”
Acta Metall.
,
10
(
9
), pp.
789
798
.
38.
Lücke
,
K.
, and
Stüwe
,
H. P.
,
1971
, “
On the Theory of Impurity Controlled Grain Boundary Motion
,”
Acta Metall.
,
19
(
10
), pp.
1087
1099
.
39.
Smith
,
C. S.
,
1948
, “
Grains, Phases and Interfaces: Interpretation of Microstructures
,”
Trans. AIME
,
175
, pp.
15
51
.
40.
Manohar
,
P. A.
,
Ferry
,
M.
, and
Chandra
,
T.
,
1998
, “
Five Decades of the Zener Equation
,”
ISIJ Int.
,
38
, pp.
913
924
.
You do not currently have access to this content.