Volume conservation during plastic deformation is the most important feature and should be realized in elastoplastic theories. However, it is found in this paper that an elastoplastic theory is not volume conserved if it improperly sets an arbitrary plastic strain rate tensor to be deviatoric. We discuss how to rigorously realize volume conservation in finite strain regime, especially when the unloading stress free configuration is not adopted in the elastoplastic theories. An accurate condition of volume conservation is first clarified and used in this paper that the density of a volume element after the applied loads are completely removed should be identical to that of the initial stress free states. For the elastoplastic theories that adopt the unloading stress free configuration (i.e., the intermediate configuration), the accurate condition of volume conservation is satisfied only if specific definitions of the plastic strain rate are used among many other different definitions. For the elastoplastic theories that do not adopt the unloading stress free configuration, it is even more difficult to realize volume conservation as the information of the stress free configuration lacks. To find a universal approach of realizing volume conservation for elastoplastic theories whether or not adopt the unloading stress free configuration, we propose a single assumption that the density of material only depends on the trace of the Cauchy stress by using their objectivities. Two strategies are further discussed to satisfy the accurate condition of volume conservation: directly and slightly revising the tangential stiffness tensor or using a properly chosen stress/strain measure and elastic compliance tensor. They are implemented into existing elastoplastic theories, and the volume conservation is demonstrated by both theoretical proof and numerical examples. The potential application of the proposed theories is a better simulation of manufacture process such as metal forming.

References

References
1.
Mandel
,
J.
,
1974
, “
Director Vectors and Constitutive Equations for Plastic and Visco-Plastic Media
,”
Problems of Plasticity
,
A.
Sawczwk
, ed., Springer, Dordrecht, The Netherlands, pp.
135
143
.
2.
Rice
,
J. R.
,
1971
, “
Inelastic Constitutive Relations for Solids: An Internal-Variable Theory and Its Application to Metal Plasticity
,”
J. Mech. Phys. Solids
,
19
(6), pp.
433
455
.
3.
Rice
,
J. R.
,
1975
, “
Continuum Mechanics and Thermodynamics of Plasticity in Relation to Microscale Deformation Mechanics
,”
Constitutive Equations in Plasticity
,
A. S.
Argon
, ed.,
MIT Press
,
Cambridge, UK
, pp.
23
79
.
4.
Hill
,
R.
, and
Rice
,
J. R.
,
1972
, “
Constitutive Analysis of Elastic-Plastic Crystals at Arbitrary Strain
,”
J. Mech. Phys. Solids
,
20
(6), pp.
401
413
.
5.
Hill
,
R.
, and
Rice
,
J. R.
,
1973
, “
Elastic Potential and the Structure of Inelastic Constitutive Laws
,”
SIAM J. Appl. Math.
,
25
(
3
), pp.
448
461
.
6.
Moran
,
B.
,
Ortiz
,
M.
, and
Shih
,
C. F.
,
1990
, “
Formulation of Implicit Finite Element Methods for Multiplicative Finite Deformation Plasticity
,”
Int. J. Numer. Methods Eng.
,
29
(3), pp.
483
514
.
7.
Besseling
,
J. F.
, and
Van der Giessen
,
E.
,
1994
,
Mathematical Modelling of Inelastic Deformation
,
Chapman & Hall
,
London
.
8.
Yang
,
Q.
,
Mota
,
A.
, and
Ortiz
,
M.
,
2006
, “
A Finite-Deformation Constitutive Model of Bulk Metallic Glass Plasticity
,”
Comput. Mech.
,
37
(
2
), pp.
194
204
.
9.
Lele
,
S. P.
, and
Anand
,
L.
,
2009
, “
A Large-Deformation Strain-Gradient Theory for Isotropic Viscoplastic Materials
,”
Int. J. Plast.
,
25
(
3
), pp.
420
453
.
10.
Rubin
,
M. B.
, and
Ichihara
,
M.
,
2010
, “
Rheological Models for Large Deformations of Elastic-Viscoplastic Materials
,”
Int. J. Eng. Sci.
,
48
(
11
), pp.
1534
1543
.
11.
Vladimirov
,
I. N.
,
Pietryga
,
M. P.
, and
Reese
,
S.
,
2010
, “
Anisotropic Finite Elastoplasticity With Nonlinear Kinematic and Isotropic Hardening and Application to Sheet Metal Forming
,”
Int. J. Plast.
,
26
(5), pp.
659
687
.
12.
Volokh
,
K. Y.
,
2013
, “
An Approach to Elastoplasticity at Large Deformations
,”
Eur. J. Mech. A-Solids
,
39
, pp.
153
162
.
13.
Altenbach
,
H.
, and
Eremeyev
,
V. A.
,
2014
, “
Strain Rate Tensors and Constitutive Equations of Inelastic Micropolar Materials
,”
Int. J. Plast.
,
63
, pp.
3
7
.
14.
Shutov
,
A. V.
, and
Ihlemann
,
J.
,
2014
, “
Analysis of Some Basic Approaches to Finite Strain Elasto-Plasticity in View of Reference Change
,”
Int. J. Plast.
,
63
, pp.
183
197
.
15.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
,
2015
, “
Inelastic Response of Solids Described by Implicit Constitutive Relations With Nonlinear Small Strain Elastic Response
,”
Int. J. Plast.
,
71
, pp.
1
9
.
16.
Chaouki
,
H.
,
Picard
,
D.
,
Ziegler
,
D.
,
Azari
,
K.
,
Alamdari
,
H.
, and
Fafard
,
M.
,
2016
, “
Viscoplastic Modeling of the Green Anode Paste Compaction Process
,”
ASME J. Appl. Mech.
,
83
(
2
), p.
021002
.
17.
Zhu
,
Y.
,
Kang
,
G.
,
Kan
,
Q.
,
Bruhns
,
O. T.
, and
Liu
,
Y.
,
2016
, “
Thermo-Mechanically Coupled Cyclic Elasto-Viscoplastic Constitutive Model of Metals: Theory and Application
,”
Int. J. Plast.
,
79
, pp.
111
152
.
18.
Chowdhury
,
S. R.
,
Kar
,
G.
,
Roy
,
D.
, and
Reddy
,
J. N.
,
2017
, “
Two-Temperature Thermodynamics for Metal Viscoplasticity: Continuum Modeling and Numerical Experiments
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011002
.
19.
Bertram
,
A.
,
2005
,
Elasticity and Plasticity of Large Deformations: An Introduction
,
Springer
,
Berlin
.
20.
Dunne
,
F.
, and
Petrinic
,
N.
,
2005
,
Introduction to Computational Plasticity
,
Oxford University Press
,
New York
.
21.
Hashiguchi
,
K.
,
2009
,
Elastoplasticity Theory
,
Springer
,
Berlin
.
22.
Lubarda
,
V. A.
,
2001
,
Elastoplasticity Theory
,
CRC Press
,
Boca Raton, FL
.
23.
Naghdi
,
P. M.
,
1990
, “
A Critical-Review of the State of Finite Plasticity
,”
J. Appl. Math. Phys.
,
41
(3), pp.
315
394
.
24.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
2006
, “
Elastoplasticity Beyond Small Deformations
,”
Acta Mech.
,
182
(1–2), pp.
31
111
.
25.
Chen
,
H. S.
,
Ma
,
J.
,
Pei
,
Y.
, and
Fang
,
D. N.
,
2013
, “
Anti-Plane Yoffe-Type Crack in Ferroelectric Materials
,”
Int. J. Fract.
,
179
(1–2), pp.
35
43
.
26.
Chen
,
H. S.
,
Pei
,
Y.
,
Liu
,
J.
, and
Fang
,
D. N.
,
2013
, “
Moving Polarization Saturation Crack in Ferroelectric Solids
,”
Eur. J. Mech.-A/Solids
,
41
, pp.
43
49
.
27.
Chen
,
H. S.
,
Pei
,
Y. M.
,
Liu
,
B.
, and
Fang
,
D. N.
,
2013
, “
Rate Dependant Heat Generation in Single Cycle of Domain Switching of Lead Zirconate Titanate Via In-Situ Spontaneous Temperature Measurement
,”
Appl. Phys. Lett.
,
102
(24), p.
242912
.
28.
Chen
,
H. S.
,
Wang
,
H. L.
,
Pei
,
Y. M.
,
Wei
,
Y. J.
,
Liu
,
B.
, and
Fang
,
D. N.
,
2015
, “
Crack Instability of Ferroelectric Solids Under Alternative Electric Loading
,”
J. Mech. Phys. Solids
,
81
, pp.
75
90
.
29.
Wojnar
,
C. S.
, and
Kochmann
,
D. M.
,
2017
, “
Linking Internal Dissipation Mechanisms to the Effective Complex Viscoelastic Moduli of Ferroelectrics
,”
ASME J. Appl. Mech.
,
84
(
2
), p.
021006
.
30.
Zhang
,
H.
,
Yu
,
Z.
,
Pei
,
Y.
, and
Fang
,
D.
,
2017
, “
Butterfly Change in Electric Field-Dependent Young's Modulus: Bulge Test and Phase Field Model
,”
ASME J. Appl. Mech.
,
84
(
5
), p.
051009
.
31.
Ziolkowski
,
A.
,
2007
, “
Three-Dimensional Phenomenological Thermodynamic Model of Pseudoelasticity of Shape Memory Alloys at Finite Strains
,”
Continuum Mech. Thermodyn.
,
19
(6), pp.
379
398
.
32.
Thamburaja
,
P.
,
2010
, “
A Finite-Deformation-Based Phenomenological Theory for Shape-Memory Alloys
,”
Int. J. Plast.
,
26
(
8
), pp.
1195
1219
.
33.
Arghavani
,
J.
,
Auricchio
,
F.
, and
Naghdabadi
,
R.
,
2011
, “
A Finite Strain Kinematic Hardening Constitutive Model Based on Hencky Strain: General Framework, Solution Algorithm and Application to Shape Memory Alloys
,”
Int. J. Plast.
,
27
(
6
), pp.
940
961
.
34.
Kelly
,
A.
,
Stebner
,
A. P.
, and
Bhattacharya
,
K.
,
2016
, “
A Micromechanics-Inspired Constitutive Model for Shape-Memory Alloys That Accounts for Initiation and Saturation of Phase Transformation
,”
J. Mech. Phys. Solids
,
97
, pp.
197
224
.
35.
Moon
,
S.
,
Rao
,
I. J.
, and
Chester
,
S. A.
,
2016
, “
Triple Shape Memory Polymers: Constitutive Modeling and Numerical Simulation
,”
ASME J. Appl. Mech.
,
83
(
7
), p.
071008
.
36.
LaMaster
,
D. H.
,
Feigenbaum
,
H. P.
,
Nelson
,
I. D.
, and
Ciocanel
,
C.
,
2014
, “
A Full Two-Dimensional Thermodynamic-Based Model for Magnetic Shape Memory Alloys
,”
ASME J. Appl. Mech.
,
81
(
6
), p.
061003
.
37.
Tang
,
H.
,
Barthelat
,
F.
, and
Espinosa
,
H. D.
,
2007
, “
An Elasto-Viscoplastic Interface Model for Investigating the Constitutive Behavior of Nacre
,”
J. Mech. Phys. Solids
,
55
(
7
), pp.
1410
1438
.
38.
Chen
,
K.
,
Kang
,
G.
,
Yu
,
C.
,
Lu
,
F.
, and
Jiang
,
H.
,
2016
, “
Time-Dependent Uniaxial Ratchetting of Ultrahigh Molecular Weight Polyethylene Polymer: Viscoelastic–Viscoplastic Constitutive Model
,”
ASME J. Appl. Mech.
,
83
(
10
), p.
101003
.
39.
Yu
,
C.
,
Kang
,
G.
,
Lu
,
F.
,
Zhu
,
Y.
, and
Chen
,
K.
,
2016
, “
Viscoelastic–Viscoplastic Cyclic Deformation of Polycarbonate Polymer: Experiment and Constitutive Model
,”
ASME J. Appl. Mech.
,
83
(
4
), p.
041002
.
40.
Liu
,
Y.
,
Zhang
,
H.
, and
Zheng
,
Y.
,
2016
, “
A Micromechanically Based Constitutive Model for the Inelastic and Swelling Behaviors in Double Network Hydrogels
,”
ASME J. Appl. Mech.
,
83
(
2
), p.
021008
.
41.
Wang
,
H.
, and
Shen
,
S.
,
2016
, “
A Chemomechanical Model for Stress Evolution and Distribution in the Viscoplastic Oxide Scale During Oxidation
,”
ASME J. Appl. Mech.
,
83
(
5
), p.
051008
.
42.
Miehe
,
C.
,
Apel
,
N.
, and
Lambrecht
,
M.
,
2002
, “
Anisotropic Additive Plasticity in the Logarithmic Strain Space: Modular Kinematic Formulation and Implementation Based on Incremental Minimization Principles for Standard Materials
,”
Comput. Methods Appl. Mech. Eng.
,
191
(47–48), pp.
5383
5425
.
43.
Weber
,
G.
, and
Anand
,
L.
,
1990
, “
Finite Deformation Constitutive Equations and a Time Integration Procedure for Isotropic, Hyperelastic–Viscoplastic Solids
,”
Comput. Methods Appl. Mech. Eng.
,
79
(2), pp.
173
202
.
44.
Simo
,
J. C.
,
1992
, “
Algorithms for Static and Dynamic Multiplicative Plasticity That Preserve the Classical Return Mapping Schemes of the Infinitesimal Theory
,”
Comput. Methods Appl. Mech. Eng.
,
99
(1), pp.
61
112
.
45.
Reese
,
S.
, and
Govindjee
,
S.
,
1998
, “
A Theory of Finite Viscoelasticity and Numerical Aspects
,”
Int. J. Solids Struct.
,
35
(26–27), pp.
3455
3482
.
46.
Dettmer
,
W.
, and
Reese
,
S.
,
2004
, “
On the Theoretical and Numerical Modelling of Armstrong–Frederick Kinematic Hardening in the Finite Strain Regime
,”
Comput. Methods Appl. Mech. Eng.
,
193
(1–2), pp.
87
116
.
47.
Reese
,
S.
, and
Christ
,
D.
,
2008
, “
Finite Deformation Pseudo-Elasticity of Shape Memory Alloys–Constitutive Modelling and Finite Element Implementation
,”
Int. J. Plast.
,
24
(3), pp.
455
482
.
48.
Vladimirov
,
I. N.
,
Pietryga
,
M. P.
, and
Reese
,
S.
,
2008
, “
On the Modelling of Non-Linear Kinematic Hardening at Finite Strains With Application to Springback–Comparison of Time Integration Algorithms
,”
Int. J. Numer. Methods Eng.
,
75
(1), pp.
1
28
.
49.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1971
, “
Some Remarks on Elastic-Plastic Deformation at Finite Strain
,”
Int. J. Eng. Sci.
,
9
(12), pp.
1219
1229
.
50.
Bruhns
,
O. T.
,
2015
, “
The Multiplicative Decomposition of the Deformation Gradient in Plasticity—Origin and Limitations
,”
From Creep Damage Mechanics to Homogenization Methods
, H. Altenbach, T. Matsuda, and D. Okumura, eds.,
Springer
, Cham, Switzerland, pp.
37
66
.
51.
Hill
,
R.
,
1978
, “
Aspects of Invariance in Solids Mechanics
,”
Advances in Applied Mechanics
, Vol. 18, C. S. Yih, ed.,
Academic Press
,
New York
, pp.
1
75
.
52.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1965
, “
A General Theory of an Elastic-Plastic Continuum
,”
Arch. Ration. Mech. Anal.
,
18
(4), pp.
251
281
.
53.
Simo
,
J. C.
, and
Ortiz
,
M.
,
1985
, “
A Unified Approach to Finite Deformation Elastoplastic Analysis Based on the Use of Hyperelastic Constitutive Equations
,”
Comput. Methods Appl. Mech. Eng.
,
49
(2), pp.
221
245
.
54.
Gross
,
A. J.
, and
Ravi-Chandar
,
K.
,
2015
, “
On the Extraction of Elastic–Plastic Constitutive Properties From Three-Dimensional Deformation Measurements
,”
ASME J. Appl. Mech.
,
82
(
7
), p.
071013
.
55.
Bažant
,
Z. P.
,
1971
, “
A Correlation Study of Formulations of Incremental Deformation and Stability of Continuous Bodies
,”
ASME J. Appl. Mech.
,
38
(
4
), pp.
919
928
.
56.
Lee
,
E. H.
,
Mallett
,
R. L.
, and
Wertheimer
,
T. B.
,
1983
, “
Stress Analysis for Anisotropic Hardening in Finite-Deformation Plasticity
,”
ASME J. Appl. Mech.
,
50
(
3
), pp.
554
560
.
57.
Atluri
,
S. N.
,
1984
, “
On Constitutive Relations at Finite Strain: Hypo-Elasticity and Elasto-Plasticity With Isotropic or Kinematic Hardening
,”
Comput. Methods Appl. Mech. Eng.
,
43
(2), pp.
137
171
.
58.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
1997
, “
Logarithmic Strain, Logarithmic Spin and Logarithmic Rate
,”
Acta Mech.
,
124
(1–4), pp.
89
105
.
59.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
1997
, “
Hypoelasticity Model Based Upon the Logarithmic Stress Rate
,”
J. Elast.
,
47
(
1
), pp.
51
68
.
60.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
1998
, “
On Objective Corotational Rates and Their Defining Spin Tensors
,”
Int. J. Solids Struct.
,
35
(
30
), pp.
4001
4014
.
61.
Bažant
,
Z. P.
,
Gattu
,
M.
, and
Vorel
,
J.
,
2012
, “
Work Conjugacy Error in Commercial Finite-Element Codes: Its Magnitude and How to Compensate for It
,”
Proc. R. Soc. A
,
468
(2146), pp.
3047
3058
.
62.
Ji
,
W.
,
Waas
,
A. M.
, and
Bazant
,
Z. P.
,
2013
, “
On the Importance of Work-Conjugacy and Objective Stress Rates in Finite Deformation Incremental Finite Element Analysis
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041024
.
63.
Vorel
,
J.
,
Bažant
,
Z. P.
, and
Gattu
,
M.
,
2013
, “
Elastic Soft-Core Sandwich Plates: Critical Loads and Energy Errors in Commercial Codes Due to Choice of Objective Stress Rate
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041034
.
64.
Bažant
,
Z. P.
, and
Vorel
,
J.
,
2014
, “
Energy-Conservation Error Due to Use of Green–Naghdi Objective Stress Rate in Commercial Finite-Element Codes and Its Compensation
,”
ASME J. Appl. Mech.
,
81
(
2
), p.
021008
.
65.
Vorel
,
J.
, and
Bažant
,
Z. P.
,
2014
, “
Review of Energy Conservation Errors in Finite Element Softwares Caused by Using Energy-Inconsistent Objective Stress Rates
,”
Adv. Eng. Software
,
72
, pp.
3
7
.
66.
Petric
,
D.
,
Owen
,
D. R. J.
, and
Honnor
,
M. E.
,
1992
, “
A Model for Finite Strain Elasto-Plasticity Based on Logarithmic Strains: Computational Issues
,”
Comput. Methods Appl. Mech. Eng.
,
94
(1), pp.
35
61
.
67.
Bruhns
,
O. T.
,
Xiao
,
H.
, and
Meyers
,
A.
,
1999
, “
Self-Consistent Eulerian Rate Type Elasto-Plasticity Models Based upon the Logarithmic Stress Rate
,”
Int. J. Plast.
,
15
(5), pp.
479
520
.
68.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
2000
, “
A Consistent Finite Elastoplasticity Theory Combining Additive and Multiplicative Decomposition of the Stretching and the Deformation Gradient
,”
Int. J. Plast.
,
16
(2), pp.
143
177
.
69.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
2001
, “
Large Strain Responses of Elastic-Perfect Plasticity and Kinematic Hardening Plasticity With the Logarithmic Rate: Swift Effect in Torsion
,”
Int. J. Plast.
,
17
(2), pp.
211
235
.
You do not currently have access to this content.