The immobilization of receptor–ligand molecules in dynamic force spectroscopy (DFS) often relies on an extra noncovalent linkage to solid surfaces, resulting in two barrier-crossing diffusion processes in series and concurrent bond dissociations. One outstanding theoretical issue is whether the linkage between the immobilizer and biomolecule is sufficiently strong during repeated force ramping in the measurements and how it might influence the interpretation on receptor–ligand kinetics. Following the classical framework by Kramers, we regard each dissociation process as a flux of probabilistic bond configuration outward over an energy barrier in the coordinated energy landscape, and solve the two coupled boundary value problems in the form of Smoluchowski equation. Strong kinetic and mechanical coupling is observed between the two molecular bonds in series, with the results showing that involving a noncovalent linkage in DFS can obscure the unbinding characteristics of the receptor–ligand bond. Our approach provides a quantitative assessment to the hidden effects of having a fragile molecular anchorage in DFS and allows the corrected interpretation on receptor–ligand dissociation kinetics in the case.

References

References
1.
Bustamante
,
C.
,
Chemla
,
Y. R.
,
Forde
,
N. R.
, and
Izhaky
,
D.
,
2004
, “
Mechanical Processes in Biochemistry
,”
Annu. Rev. Biochem.
,
73
, pp.
705
748
.
2.
Xu
,
G. K.
,
Hu
,
J.
,
Lipowsky
,
R.
, and
Weikl
,
T. R.
,
2015
, “
Binding Constants of Membrane-Anchored Receptors and Ligands: A General Theory Corroborated by Monte Carlo Simulations
,”
J. Chem. Phys.
,
143
(
24
), p.
243136
.
3.
Xu
,
G. K.
,
Qian
,
J.
, and
Hu
,
J.
,
2016
, “
The Glycocalyx Promotes Cooperative Binding and Clustering of Adhesion Receptors
,”
Soft Matter
,
12
(
20
), pp.
4572
4583
.
4.
Ju
,
L.
,
Qian
,
J.
, and
Zhu
,
C.
,
2015
, “
Transport Regulation of Two-Dimensional Receptor-Ligand Association
,”
Biophys. J.
,
108
(
7
), pp.
1773
1784
.
5.
Li
,
L.
,
Yao
,
H. M.
, and
Wang
,
J. Z.
,
2015
, “
Dynamic Strength of Molecular Bond Clusters Under Displacement- and Force-Controlled Loading Conditions
,”
ASME J. Appl. Mech.
,
83
(
2
), p.
021004
.
6.
Wang
,
J. Z.
, and
Huang
,
Q. Z.
,
2015
, “
A Stochastic Description on Adhesion of Molecular Bond Clusters Between Rigid Media With Curved Interfaces
,”
Int. J. Appl. Mech.
,
7
(
5
), p.
1550071
.
7.
Jiang
,
H. Y.
,
Qian
,
J.
,
Lin
,
Y.
,
Ni
,
Y.
, and
He
,
L. H.
,
2015
, “
Aggregation Dynamics of Molecular Bonds Between Compliant Materials
,”
Soft Matter
,
11
(
14
), pp.
2812
2820
.
8.
Qian
,
J.
,
Lin
,
J.
,
Xu
,
G. K.
,
Lin
,
Y.
, and
Gao
,
H.
,
2017
, “
Thermally Assisted Peeling of an Elastic Strip in Adhesion With a Substrate Via Molecular Bonds
,”
J. Mech. Phys. Solids
,
101
, pp.
197
208
.
9.
Binnig
,
G.
,
Quate
,
C. F.
, and
Gerber
,
C.
,
1986
, “
Atomic Force Microscope
,”
Phys. Rev. Lett.
,
56
(
9
), pp.
930
933
.
10.
Evans
,
E.
,
Ritchie
,
K.
, and
Merkel
,
R.
,
1995
, “
Sensitive Force Technique to Probe Molecular Adhesion and Structural Linkages at Biological Interfaces
,”
Biophys. J.
,
68
(
6
), pp.
2580
2587
.
11.
Ashkin
,
A.
,
1992
, “
Forces of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime
,”
Biophys. J.
,
61
(
2
), pp.
569
582
.
12.
Bell
,
G. I.
,
1978
, “
Models for Specific Adhesion of Cells to Cells
,”
Science
,
200
(
4342
), pp.
618
627
.
13.
Evans
,
E.
, and
Ritchie
,
K.
,
1997
, “
Dynamic Strength of Molecular Adhesion Bonds
,”
Biophys. J.
,
72
(
4
), pp.
1541
1555
.
14.
Evans
,
E.
,
1999
, “
Introductory Lecture Energy Landscapes of Biomolecular Adhesion and Receptor Anchoring at Interfaces Explored With Dynamic Force Spectroscopy
,”
Faraday Discuss.
,
111
, pp.
1
16
.
15.
Li
,
D. C.
, and
Ji
,
B. H.
,
2014
, “
Predicted Rupture Force of a Single Molecular Bond Becomes Rate Independent at Ultralow Loading Rates
,”
Phys. Rev. Lett.
,
112
(
7
), p.
078302
.
16.
Chen
,
X. F.
,
Li
,
D. C.
,
Ji
,
B. H.
, and
Chen
,
B.
,
2015
, “
Reconciling Bond Strength of a Slip Bond at Low Loading Rates With Rebinding
,”
Europhys. Lett.
,
109
(
6
), p.
68002
.
17.
Dong
,
C. L.
, and
Chen
,
B.
,
2016
, “
Coupling of Bond Breaking With State Transition Leads to High Apparent Detachment Rates of a Single Myosin
,”
ASME J. Appl. Mech.
,
83
(
5
), p.
051011
.
18.
Zimmermann
,
J. L.
,
Nicolaus
,
T.
,
Neuert
,
G.
, and
Blank
,
K.
,
2010
, “
Thiol-Based, Site-Specific and Covalent Immobilization of Biomolecules for Single-Molecule Experiments
,”
Nat. Protoc.
,
5
(
6
), pp.
975
985
.
19.
Bayas
,
M. V.
,
Leung
,
A.
,
Evans
,
E.
, and
Leckband
,
D.
,
2006
, “
Lifetime Measurements Reveal Kinetic Differences Between Homophilic Cadherin Bonds
,”
Biophys. J.
,
90
(
4
), pp.
1385
1395
.
20.
Evans
,
E.
,
2001
, “
Probing the Relation Between Force—Lifetime—and Chemistry in Single Molecular Bonds
,”
Annu. Rev. Biophys. Biomol. Struct.
,
30
, pp.
105
128
.
21.
Marshall
,
B. T.
,
Long
,
M.
,
Piper
,
J. W.
,
Yago
,
T.
,
McEver
,
R. P.
, and
Zhu
,
C.
,
2003
, “
Direct Observation of Catch Bonds Involving Cell-Adhesion Molecules
,”
Nature
,
423
(
6936
), pp.
190
193
.
22.
Denizli
,
A.
, and
Piskin
,
E.
,
2001
, “
Dye-Ligand Affinity Systems
,”
J. Biochem. Biophys. Methods
,
49
(
1–3
), pp.
391
416
.
23.
Torchilin
,
V. P.
,
Levchenko
,
T. S.
,
Lukyanov
,
A. N.
,
Khaw
,
B. A.
,
Klibanov
,
A. L.
,
Rammohan
,
R.
,
Samokhin
,
G. P.
, and
Whiteman
,
K. R.
,
2001
, “
P-Nitrophenylcarbonyl-PEG-PE-Liposomes: Fast and Simple Attachment of Specific Ligands, Including Monoclonal Antibodies, to Distal Ends of PEG Chains Via P-Nitrophenylcarbonyl Groups
,”
Biochim. Biophys. Acta Biomembr.
,
1511
(
2
), pp.
397
411
.
24.
Lee
,
G.
,
Abdi
,
K.
,
Jiang
,
Y.
,
Michaely
,
P.
,
Bennett
,
V.
, and
Marszalek
,
P. E.
,
2006
, “
Nanospring Behaviour of Ankyrin Repeats
,”
Nature
,
440
(
7081
), pp.
246
249
.
25.
Schmitt
,
L.
,
Ludwig
,
M.
,
Gaub
,
H. E.
, and
Tampe
,
R.
,
2000
, “
A Metal-Chelating Microscopy Tip as a New Toolbox for Single-Molecule Experiments by Atomic Force Microscopy
,”
Biophys. J.
,
78
(
6
), pp.
3275
3285
.
26.
Verbelen
,
C.
,
Gruber
,
H. J.
, and
Dufrêne
,
Y. F.
,
2007
, “
The NTA-His6 Bond Is Strong Enough for AFM Single-Molecular Recognition Studies
,”
J. Mol. Recognit.
,
20
(
6
), pp.
490
494
.
27.
Schmidt
,
T. G. M.
, and
Skerra
,
A.
,
2007
, “
The Strep-Tag System for One-Step Purification and High-Affinity Detection or Capturing of Proteins
,”
Nat. Protoc.
,
2
(
6
), pp.
1528
1535
.
28.
Neuert
,
G.
,
Albrecht
,
C.
,
Pamir
,
E.
, and
Gaub
,
H. E.
,
2006
, “
Dynamic Force Spectroscopy of the Digoxigenin-Antibody Complex
,”
FEBS Lett.
,
580
(
2
), pp.
505
509
.
29.
Hernandez
,
K.
, and
Fernandez-Lafuente
,
R.
,
2011
, “
Control of Protein Immobilization: Coupling Immobilization and Site-Directed Mutagenesis to Improve Biocatalyst or Biosensor Performance
,”
Enzyme Microbial Technol.
,
48
(
2
), pp.
107
122
.
30.
Barbosa
,
O.
,
Ortiz
,
C.
,
Berenguer-Murcia
,
A.
,
Torres
,
R.
,
Rodrigues
,
R. C.
, and
Fernandez-Lafuente
,
R.
,
2015
, “
Strategies for the One-Step Immobilization-Purification of Enzymes as Industrial Biocatalysts
,”
Biotechnol. Adv.
,
33
(
5
), pp.
435
456
.
31.
Walton
,
E. B.
,
Lee
,
S.
, and
Van Vliet
,
K. J.
,
2008
, “
Extending Bell's Model: How Force Transducer Stiffness Alters Measured Unbinding Forces and Kinetics of Molecular Complexes
,”
Biophys. J.
,
94
(
7
), pp.
2621
2630
.
32.
Maitra
,
A.
, and
Arya
,
G.
,
2010
, “
Model Accounting for the Effects of Pulling-Device Stiffness in the Analyses of Single-Molecule Force Measurements
,”
Phys. Rev. Lett.
,
104
(
10
), p.
108301
.
33.
Rief
,
M.
,
Gautel
,
M.
,
Oesterhelt
,
F.
,
Fernandez
,
J. M.
, and
Gaub
,
H. E.
,
1997
, “
Reversible Unfolding of Individual Titin Immunoglobulin Domains by AFM
,”
Science
,
276
(
5315
), pp.
1109
1112
.
34.
Stahl
,
S. W.
,
Nash
,
M. A.
,
Fried
,
D. B.
,
Slutzki
,
M.
,
Barak
,
Y.
,
Bayer
,
E. A.
, and
Gaub
,
H. E.
,
2012
, “
Single-Molecule Dissection of the High-Affinity Cohesin-Dockerin Complex
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
50
), pp.
20431
20436
.
35.
Moore
,
S. W.
,
Roca-Cusachs
,
P.
, and
Sheetz
,
M. P.
,
2010
, “
Stretchy Proteins on Stretchy Substrates: The Important Elements of Integrin-Mediated Rigidity Sensing
,”
Dev. Cell
,
19
(
2
), pp.
194
206
.
36.
Neuert
,
G.
,
Albrecht
,
C. H.
, and
Gaub
,
H. E.
,
2007
, “
Predicting the Rupture Probabilities of Molecular Bonds in Series
,”
Biophys. J.
,
93
(
4
), pp.
1215
1223
.
37.
Kramers
,
H. A.
,
1940
, “
Brownian Motion in a Field of Force and the Diffusion Model of Chemical Reactions
,”
Physica
,
7
, pp.
284
304
.
38.
Freund
,
L. B.
,
2009
, “
Characterizing the Resistance Generated by a Molecular Bond as It Is Forcibly Separated
,”
Proc. Natl. Acad. Sci. U. S. A
,
106
(
22
), pp.
8818
8823
.
39.
Freund
,
L. B.
,
2012
, “
The Influence of Dimensionality on the Rate of Diffusive Escape From an Energy Well
,”
ASME J. Appl. Mech.
,
79
(
3
), p.
031012
.
40.
Dudko
,
O. K.
,
Hummer
,
G.
, and
Szabo
,
A.
,
2008
, “
Theory, Analysis, and Interpretation of Single-Molecule Force Spectroscopy Experiments
,”
Proc. Natl. Acad. Sci. U. S. A.
,
105
(
41
), pp.
15755
15760
.
41.
Dudko
,
O. K.
,
Hummer
,
G.
, and
Szabo
,
A.
,
2006
, “
Intrinsic Rates and Activation Free Energies From Single-Molecule Pulling Experiments
,”
Phys. Rev. Lett.
,
96
(
10
), p.
108101
.
42.
Guo
,
S.
,
Ray
,
C.
,
Kirkpatrick
,
A.
,
Lad
,
N.
, and
Akhremitchev
,
B. B.
,
2008
, “
Effects of Multiple-Bond Ruptures on Kinetic Parameters Extracted From Force Spectroscopy Measurements: Revisiting Biotin-Streptavidin Interactions
,”
Biophys. J.
,
95
(
8
), pp.
3964
3976
.
43.
Merkel
,
R.
,
Nassoy
,
P.
,
Leung
,
A.
,
Ritchie
,
K.
, and
Evans
,
E.
,
1999
, “
Energy Landscapes of Receptor-Ligand Bonds Explored With Dynamic Force Spectroscopy
,”
Nature
,
397
(
6714
), pp.
50
53
.
44.
Kim
,
J.
,
Zhang
,
C.-Z.
,
Zhang
,
X.
, and
Springer
,
T. A.
,
2010
, “
A Mechanically Stabilized Receptor-Ligand Flex-Bond Important in the Vasculature
,”
Nature
,
466
(
7309
), pp.
992
995
.
45.
Sarangapani
,
K. K.
,
Qian
,
J.
,
Chen
,
W.
,
Zarnitsyna
,
V. I.
,
Mehta
,
P.
,
Yago
,
T.
,
McEver
,
R. P.
, and
Zhu
,
C.
,
2011
, “
Regulation of Catch Bonds by Rate of Force Application
,”
J. Biol. Chem.
,
286
(
37
), pp.
32749
32761
.
46.
Oberhauser
,
A. F.
,
Marszalek
,
P. E.
,
Erickson
,
H. P.
, and
Fernandez
,
J. M.
,
1998
, “
The Molecular Elasticity of the Extracellular Matrix Protein Tenascin
,”
Nature
,
393
(
6681
), pp.
181
185
.
You do not currently have access to this content.