Conformability of bio-integrated electronics to soft and microscopically rough biotissues can enhance effective electronics–tissue interface adhesion and can facilitate signal/heat/mass transfer across the interface. When biotissues deform, for example, when skin stretches or heart beats, the deformation may lead to changes in conformability. Although a theory concerning just full conformability (FC) under deformation has been developed (i.e., the FC theory), there is no available theory for partially conformable (PC) systems subjected to deformation. Taking advantage of the path-independent feature of elastic deformation, we find that the total energy of a PC system subjected to stretching or compression can be analytically expressed and minimized. We discover that the FC theory is not sufficient in predicting FC and a full energy landscape obtained by our PC theory is needed for searching for the equilibrium. Our results reveal that stretching enhances conformability while compression degrades it. In addition to predicting the critical parameters to maintain FC under deformation, our PC theory can also be applied to predict the critical compressive strain beyond which FC is lost. Our theory has been validated by laminating poly(methyl methacrylate) (PMMA) membranes of different thicknesses on human skin and inducing skin deformation.

References

References
1.
Kim
,
D.-H.
,
Ghaffari
,
R.
,
Lu
,
N.
, and
Rogers
,
J. A.
,
2012
, “
Flexible and Stretchable Electronics for Biointegrated Devices
,”
Annu. Rev. Biomed. Eng.
,
14
, pp.
113
128
.
2.
Lu
,
N.
, and
Kim
,
D.-H.
,
2014
, “
Flexible and Stretchable Electronics Paving the Way for Soft Robotics
,”
Soft Rob.
,
1
(
1
), pp.
53
62
.
3.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y. G.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
.
4.
Lu
,
N. S.
, and
Yang
,
S. X.
,
2015
, “
Mechanics for Stretchable Sensors
,”
Curr. Opin. Solid State Mater. Sci.
,
19
(
3
), pp.
149
159
.
5.
Suo
,
Z. G.
,
2012
, “
Mechanics of Stretchable Electronics and Soft Machines
,”
MRS Bull.
,
37
(
3
), pp.
218
225
.
6.
Forrest
,
S. R.
,
2004
, “
The Path to Ubiquitous and Low-Cost Organic Electronic Appliances on Plastic
,”
Nature
,
428
(
6986
), pp.
911
918
.
7.
Oh
,
J. Y.
,
Rondeau-Gagne
,
S.
,
Chiu
,
Y. C.
,
Chortos
,
A.
,
Lissel
,
F.
,
Wang
,
G. J. N.
,
Schroeder
,
B. C.
,
Kurosawa
,
T.
,
Lopez
,
J.
,
Katsumata
,
T.
,
Xu
,
J.
,
Zhu
,
C. X.
,
Gu
,
X. D.
,
Bae
,
W. G.
,
Kim
,
Y.
,
Jin
,
L. H.
,
Chung
,
J. W.
,
Tok
,
J. B. H.
, and
Bao
,
Z. N.
,
2016
, “
Intrinsically Stretchable and Healable Semiconducting Polymer for Organic Transistors
,”
Nature
,
539
(
7629
), pp.
411
415
.
8.
Akinwande
,
D.
,
Petrone
,
N.
, and
Hone
,
J.
,
2014
, “
Two-Dimensional Flexible Nanoelectronics
,”
Nat. Commun.
,
5
, p. 5678.
9.
Carlson
,
A.
,
Bowen
,
A. M.
,
Huang
,
Y. G.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
,
2012
, “
Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication
,”
Adv. Mater.
,
24
(
39
), pp.
5284
5318
.
10.
Yang
,
S.
,
Chen
,
Y. C.
,
Nicolini
,
L.
,
Pasupathy
,
P.
,
Sacks
,
J.
,
Becky
,
S.
,
Yang
,
R.
,
Daniel
,
S.
,
Chang
,
Y. F.
,
Wang
,
P.
,
Schnyer
,
D.
,
Neikirk
,
D.
, and
Lu
,
N.
,
2015
, “ ‘
Cut-and-Paste’ Manufacture of Multiparametric Epidermal Sensor Systems
,”
Adv. Mater.
,
27
(
41
), pp.
6423
6430
.
11.
Fukuda
,
K.
, and
Someya
,
T.
,
2017
, “
Recent Progress in the Development of Printed Thin‐Film Transistors and Circuits With High‐Resolution Printing Technology
,”
Adv. Mater.
,
29
(
25
), p. 1602736.
12.
Kim
,
D. H.
,
Lu
,
N. S.
,
Ma
,
R.
,
Kim
,
Y. S.
,
Kim
,
R. H.
,
Wang
,
S. D.
,
Wu
,
J.
,
Won
,
S. M.
,
Tao
,
H.
,
Islam
,
A.
,
Yu
,
K. J.
,
Kim
,
T. I.
,
Chowdhury
,
R.
,
Ying
,
M.
,
Xu
,
L. Z.
,
Li
,
M.
,
Chung
,
H. J.
,
Keum
,
H.
,
McCormick
,
M.
,
Liu
,
P.
,
Zhang
,
Y. W.
,
Omenetto
,
F. G.
,
Huang
,
Y. G.
,
Coleman
,
T.
, and
Rogers
,
J. A.
,
2011
, “
Epidermal Electronics
,”
Science
,
333
(
6044
), pp.
838
843
.
13.
Hammock
,
M. L.
,
Chortos
,
A.
,
Tee
,
B. C. K.
,
Tok
,
J. B. H.
, and
Bao
,
Z. A.
,
2013
, “
25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress
,”
Adv. Mater.
,
25
(
42
), pp.
5997
6037
.
14.
Park
,
S. I.
,
Brenner
,
D. S.
,
Shin
,
G.
,
Morgan
,
C. D.
,
Copits
,
B. A.
,
Chung
,
H. U.
,
Pullen
,
M. Y.
,
Noh
,
K. N.
,
Davidson
,
S.
, and
Oh
,
S. J.
,
2015
, “
Soft, Stretchable, Fully Implantable Miniaturized Optoelectronic Systems for Wireless Optogenetics
,”
Nat. Biotechnol.
,
33
(
12
), p.
1280
.
15.
Wang
,
S. D.
,
Li
,
M.
,
Wu
,
J.
,
Kim
,
D. H.
,
Lu
,
N. S.
,
Su
,
Y. W.
,
Kang
,
Z.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2012
, “
Mechanics of Epidermal Electronics
,”
ASME J. Appl. Mech.
,
79
(
3
), p.
031022
.
16.
Jeong
,
J.-W.
,
Yeo
,
W.-H.
,
Akhtar
,
A.
,
Norton
,
J. J. S.
,
Kwack
,
Y.-J.
,
Li
,
S.
,
Jung
,
S.-Y.
,
Su
,
Y.
,
Lee
,
W.
,
Xia
,
J.
,
Cheng
,
H.
,
Huang
,
Y.
,
Choi
,
W.-S.
,
Bretl
,
T.
, and
Rogers
,
J. A.
,
2013
, “
Materials and Optimized Designs for Human-Machine Interfaces Via Epidermal Electronics
,”
Adv. Mater.
,
25
(
47
), pp.
6839
6846
.
17.
Cheng
,
H.
, and
Wang
,
S.
,
2013
, “
Mechanics of Interfacial Delamination in Epidermal Electronics Systems
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
044501
.
18.
Wang
,
L.
, and
Lu
,
N.
,
2016
, “
Conformability of a Thin Elastic Membrane Laminated on a Soft Substrate With Slightly Wavy Surface
,”
ASME J. Appl. Mech.
,
83
(
4
), p.
041007
.
19.
Kim
,
D.-H.
,
Viventi
,
J.
,
Amsden
,
J. J.
,
Xiao
,
J.
,
Vigeland
,
L.
,
Kim
,
Y.-S.
,
Blanco
,
J. A.
,
Panilaitis
,
B.
,
Frechette
,
E. S.
,
Contreras
,
D.
,
Kaplan
,
D. L.
,
Omenetto
,
F. G.
,
Huang
,
Y.
,
Hwang
,
K.-C.
,
Zakin
,
M. R.
,
Litt
,
B.
, and
Rogers
,
J. A.
,
2010
, “
Dissolvable Films of Silk Fibroin for Ultrathin Conformal Bio-Integrated Electronics
,”
Nat. Mater.
,
9
(
6
), pp.
511
517
.
20.
Xu
,
L.
,
Gutbrod
,
S. R.
,
Bonifas
,
A. P.
,
Su
,
Y.
,
Sulkin
,
M. S.
,
Lu
,
N.
,
Chung
,
H.-J.
,
Jang
,
K.-I.
,
Liu
,
Z.
,
Ying
,
M.
,
Lu
,
C.
,
Webb
,
R. C.
,
Kim
,
J.-S.
,
Laughner
,
J. I.
,
Cheng
,
H.
,
Liu
,
Y.
,
Ameen
,
A.
,
Jeong
,
J.-W.
,
Kim
,
G.-T.
,
Huang
,
Y.
,
Efimov
,
I. R.
, and
Rogers
,
J. A.
,
2014
, “
3D Multifunctional Integumentary Membranes for Spatiotemporal Cardiac Measurements and Stimulation Across the Entire Epicardium
,”
Nat. Commun.
,
5
, p. 3329.
21.
Kim
,
D.-H.
,
Ghaffari
,
R.
,
Lu
,
N.
,
Wang
,
S.
,
Lee
,
S. P.
,
Keum
,
H.
,
D’Angelo
,
R.
,
Klinker
,
L.
,
Su
,
Y.
, and
Lu
,
C.
,
2012
, “
Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy
,”
Proc. Natl. Acad. Sci.
,
109
(
49
), pp.
19910
19915
.
22.
Jeong
,
J. W.
,
Kim
,
M. K.
,
Cheng
,
H.
,
Yeo
,
W. H.
,
Huang
,
X.
,
Liu
,
Y.
,
Zhang
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2014
, “
Epidermal Electronics: Capacitive Epidermal Electronics for Electrically Safe, Long‐Term Electrophysiological Measurements
,”
Adv. Healthcare Mater.
,
3
(
5
), p. 621.
23.
Dong
,
W.
,
Xiao
,
L.
,
Zhu
,
C.
,
Ye
,
D.
,
Wang
,
S.
,
Huang
,
Y.
, and
Yin
,
Z.
,
2017
, “
Theoretical and Experimental Study of 2D Conformability of Stretchable Electronics Laminated Onto Skin
,”
Sci. China Technol. Sci.
,
60
, pp.
1
8
.
24.
Xiao
,
J.
,
Carlson
,
A.
,
Liu
,
Z.
,
Huang
,
Y.
,
Jiang
,
H.
, and
Rogers
,
J.
,
2008
, “
Stretchable and Compressible Thin Films of Stiff Materials on Compliant Wavy Substrates
,”
Appl. Phys. Lett.
,
93
(
1
), p.
013109
.
25.
Xiao
,
J.
,
Carlson
,
A.
,
Liu
,
Z. J.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2010
, “
Analytical and Experimental Studies of the Mechanics of Deformation in a Solid With a Wavy Surface Profile
,”
ASME J. Appl. Mech.
,
77
(
1
), p.
011003
.
26.
Huang
,
Z. Y.
,
Hong
,
W.
, and
Suo
,
Z.
,
2005
, “
Nonlinear Analyses of Wrinkles in a Film Bonded to a Compliant Substrate
,”
J. Mech. Phys. Solids
,
53
(
9
), pp.
2101
2118
.
27.
Tchvialeva
,
L.
,
Zeng
,
H.
,
Markhvida
,
I.
,
McLean
,
D. I.
,
Lui
,
H.
, and
Lee
,
T. K.
,
2010
, “
Skin Roughness Assessment
,”
New Developments in Biomedical Engineering
,
D.
Campolo
, ed.,
InTech, Rijeka, Croatia
, pp.
341
358
.
28.
Pailler-Mattei
,
C.
,
Bec
,
S.
, and
Zahouani
,
H.
,
2008
, “
In Vivo Measurements of the Elastic Mechanical Properties of Human Skin by Indentation Tests
,”
Med. Eng. Phys.
,
30
(
5
), pp.
599
606
.
29.
Meitl
,
M. A.
,
Zhu
,
Z.-T.
,
Kumar
,
V.
,
Lee
,
K. J.
,
Feng
,
X.
,
Huang
,
Y. Y.
,
Adesida
,
I.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
,
2006
, “
Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp
,”
Nat. Mater.
,
5
(
1
), pp.
33
38
.
30.
Ameri
,
S.
,
Ho
,
R.
,
Jang
,
H.
,
Wang
,
Y.
,
Schnyer
,
D.
,
Akinwande
,
D.
, and
Lu
,
N.
,
2016
, “
Thinnest Transparent Epidermal Sensor System Based on Graphene
,”
IEEE International Electron Devices Meeting
(
IEDM
), San Francisco, CA, Dec. 3–7.
31.
Kabiri Ameri
,
S.
,
Ho
,
R.
,
Jang
,
H.
,
Tao
,
L.
,
Wang
,
Y.
,
Wang
,
L.
,
Schnyer
,
D. M.
,
Akinwande
,
D.
, and
Lu
,
N.
,
2017
, “
Graphene Electronic Tattoo Sensors
,”
ACS Nano
,
11
(
8
), pp.
7634
7641
.
32.
Brennan
,
C. J.
,
Nguyen
,
J.
,
Yu
,
E. T.
, and
Lu
,
N.
,
2015
, “
Interface Adhesion Between 2D Materials and Elastomers Measured by Buckle Delaminations
,”
Adv. Mater. Interfaces
,
2
(
16
), p. 1500176.
33.
Wagner
,
T. J.
, and
Vella
,
D.
,
2012
, “
The Sensitivity of Graphene “Snap-Through” to Substrate Geometry
,”
Appl. Phys. Lett.
,
100
(
23
), p.
233111
.
34.
Qiao
,
S. T.
,
Gratadour
,
J. B.
,
Wang
,
L.
, and
Lu
,
N. S.
,
2015
, “
Conformability of a Thin Elastic Membrane Laminated on a Rigid Substrate With Corrugated Surface
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
5
(
9
), pp.
1237
1243
.
You do not currently have access to this content.