Massively parallel molecular dynamics (MD) simulations have been performed to understand the plastic deformation of metals. However, the intricate interplay between the deformation mechanisms and the various material properties is largely unknown in alloy systems for the limited available interatomic potentials. We adopt the meta-atom method proposed by Wang et al., which unifies MD simulations of both pure metals and alloys in the framework of the embedded atom method (EAM). Owing to the universality of EAM for metallic systems, meta-atom potentials can fit properties of different classes of alloys. Meta-atom potentials for both aluminum bronzes and hypothetic face-centered-cubic (FCC) metals have been formulated to study the parametric dependence of deformation mechanisms, which captures the essence of competitions between dislocation motion and twinning or cleavage. Moreover, the solid-solution strengthening effect can be simply accounted by introducing a scaling factor in the meta-atom method. As the computational power enlarges, this method can extend the capability of massively parallel MD simulations in understanding the mechanical behaviors of alloys. The calculation of macroscopic measurable quantities for engineering oriented alloys is expected to be possible in this way, shedding light on constructing materials with specific mechanical properties.

References

References
1.
Jacobsen
,
K. W.
, and
Schiotz
,
J.
,
2002
, “
Computational Materials Science: Nanoscale Plasticity
,”
Nat. Mater.
,
1
(
1
), pp.
15
16
.
2.
Yip
,
S.
,
2004
, “
Nanocrystalline Metals: Mapping Plasticity
,”
Nat. Mater.
,
3
(
1
), pp.
11
12
.
3.
Bragg
,
L.
, and
Nye
,
J. F.
,
1947
, “
A Dynamical Model of a Crystal Structure
,”
Proc. R. Soc. Lond. A. Math. Phys. Sci.
,
190
(
1023
), pp. 474–481.
4.
Georges
,
J. M.
,
Meille
,
G.
,
Loubet
,
J. L.
, and
Tolen
,
A. M.
,
1986
, “
Bubble Raft Model for Indentation With Adhesion
,”
Nature
,
320
(
6060
), pp.
342
344
.
5.
Gouldstone
,
A.
,
Van Vliet
,
K. J.
, and
Suresh
,
S.
,
2001
, “
Nanoindentation: Simulation of Defect Nucleation in a Crystal
,”
Nature
,
411
(
6838
), p.
656
.
6.
Daw
,
M. S.
, and
Baskes
,
M. I.
,
1983
, “
Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals
,”
Phys. Rev. Lett.
,
50
(
17
), pp.
1285
1288
.
7.
Daw
,
M. S.
, and
Baskes
,
M. I.
,
1984
, “
Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals
,”
Phys. Rev. B
,
29
(
12
), pp.
6443
6453
.
8.
Finnis
,
M. W.
, and
Sinclair
,
J. E.
,
1984
, “
A Simple Empirical N-Body Potential for Transition-Metals
,”
Philos. Mag. A
,
50
(
1
), pp.
45
55
.
9.
Yamakov
,
V.
,
Wolf
,
D.
,
Phillpot
,
S. R.
,
Mukherjee
,
A. K.
, and
Gleiter
,
H.
,
2004
, “
Deformation-Mechanism Map for Nanocrystalline Metals by Molecular-Dynamics Simulation
,”
Nat. Mater.
,
3
(
1
), pp.
43
47
.
10.
Wang
,
P.
,
Xu
,
S.
,
Liu
,
J.
,
Li
,
X.
,
Wei
,
Y.
,
Wang
,
H.
,
Gao
,
H.
, and
Yang
,
W.
,
2017
, “
Atomistic Simulation for Deforming Complex Alloys With Application Toward TWIP Steel and Associated Physical Insights
,”
J. Mech. Phys. Solids
,
98
, pp.
290
308
.
11.
Johnson
,
R. A.
,
1989
, “
Alloy Models With the Embedded-Atom Method
,”
Phys. Rev. B
,
39
(
17
), pp.
12554
12559
.
12.
Daw
,
M. S.
,
Foiles
,
S. M.
, and
Baskes
,
M. I.
,
1993
, “
The Embedded-Atom Method: A Review of Theory and Applications
,”
Mater. Sci. Rep.
,
9
(
7–8
), pp.
251
310
.
13.
Mendelev
,
M. I.
,
Kramer
,
M. J.
,
Becker
,
C. A.
, and
Asta
,
M.
,
2008
, “
Analysis of Semi-Empirical Interatomic Potentials Appropriate for Simulation of Crystalline and Liquid Al and Cu
,”
Philos. Mag.
,
88
(
12
), pp.
1723
1750
.
14.
Rose
,
J. H.
,
Smith
,
J. R.
,
Guinea
,
F.
, and
Ferrante
,
J.
,
1984
, “
Universal Features of the Equation of State of Metals
,”
Phys. Rev. B
,
29
(
6
), pp.
2963
2969
.
15.
Bain
,
E. C.
,
1924
, “
The Nature of Martensite
,”
Trans. Am. Inst. Min. Metall. Eng.
,
70
(
98
), pp.
25
46
.
16.
Milstein
,
F.
,
Fang
,
H. E.
, and
Marschall
,
J.
,
1994
, “
Mechanics and Energetics of the Bain Transformation
,”
Philos. Mag. A
,
70
(
4
), pp.
621
639
.
17.
Weixue
,
L.
, and
Tzuchiang
,
W.
,
1998
, “
Ab Initio Investigation of the Elasticity and Stability of Aluminium
,”
J. Phys.: Condens. Matter
,
10
(
43
), p.
9889
.
18.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
9
.
19.
Kittel
,
C.
,
2004
,
Introduction to Solid State Physics
,
Wiley
,
Hoboken, NJ
.
20.
Pearson
,
W. B.
,
1967
,
A Handbook of Lattice Spacings and Structures of Metals and Alloys
, Pergamon Press, London.
21.
Skriver
,
H. L.
, and
Rosengaard
,
N. M.
,
1992
, “
Surface Energy and Work Function of Elemental Metals
,”
Phys. Rev. B
,
46
(
11
), pp.
7157
7168
.
22.
Rohatgi
,
A.
,
Vecchio
,
K.
, and
Gray
,
G.
, III
,
2001
, “
The Influence of Stacking Fault Energy on the Mechanical Behavior of Cu and Cu-Al Alloys: Deformation Twinning, Work Hardening, and Dynamic Recovery
,”
Metall. Mater. Trans. A
,
32
(
1
), pp.
135
145
.
23.
Rohatgi
,
A.
,
Vecchio
,
K. S.
, and
Gray
,
I. G. T.
,
2001
, “
A Metallographic and Quantitative Analysis of the Influence of Stacking Fault Energy on Shock-Hardening in Cu and Cu–Al Alloys
,”
Acta Mater.
,
49
(
3
), pp.
427
438
.
24.
Zhang
,
Y.
,
Tao
,
N. R.
, and
Lu
,
K.
,
2009
, “
Effect of Stacking-Fault Energy on Deformation Twin Thickness in Cu–Al Alloys
,”
Scr. Mater.
,
60
(
4
), pp.
211
213
.
25.
Kibey
,
S.
,
Liu
,
J. B.
,
Johnson
,
D. D.
, and
Sehitoglu
,
H.
,
2006
, “
Generalized Planar Fault Energies and Twinning in Cu–Al Alloys
,”
Appl. Phys. Lett.
,
89
(
19
), p.
191911
.
26.
Liang
,
W.
,
Zhou
,
M.
, and
Ke
,
F.
,
2005
, “
Shape Memory Effect in Cu Nanowires
,”
Nano Lett.
,
5
(
10
), pp.
2039
2043
.
27.
Liang
,
W.
, and
Zhou
,
M.
,
2006
, “
Atomistic Simulations Reveal Shape Memory of FCC Metal Nanowires
,”
Phys. Rev. B
,
73
(
11
), p.
115409
.
28.
Li
,
S. Z.
,
Ding
,
X. D.
,
Li
,
J.
,
Ren
,
X. B.
,
Sun
,
J.
, and
Ma
,
E.
,
2010
, “
High-Efficiency Mechanical Energy Storage and Retrieval Using Interfaces in Nanowires
,”
Nano Lett.
,
10
(
5
), pp.
1774
1779
.
29.
Wang
,
P.
,
Chou
,
W.
,
Nie
,
A.
,
Huang
,
Y.
,
Yao
,
H.
, and
Wang
,
H.
,
2011
, “
Molecular Dynamics Simulation on Deformation Mechanisms in Body-Centered-Cubic Molybdenum Nanowires
,”
J. Appl. Phys.
,
110
(
9
), p.
093521
.
30.
Van Swygenhoven
,
H.
,
Derlet
,
P. M.
, and
Froseth
,
A. G.
,
2004
, “
Stacking Fault Energies and Slip in Nanocrystalline Metals
,”
Nat. Mater.
,
3
(
6
), pp.
399
403
.
31.
Kibey
,
S.
,
Liu
,
J. B.
,
Johnson
,
D. D.
, and
Sehitoglu
,
H.
,
2007
, “
Energy Pathways and Directionality in Deformation Twinning
,”
Appl. Phys. Lett.
,
91
(
18
), p.
181916
.
32.
Bernstein
,
N.
, and
Tadmor
,
E. B.
,
2004
, “
Tight-Binding Calculations of Stacking Energies and Twinnability in FCC Metals
,”
Phys. Rev. B
,
69
(
9
), p.
094116
.
33.
Rice
,
J. R.
,
1992
, “
Dislocation Nucleation From a Crack Tip—An Analysis Based on the Peierls Concept
,”
J. Mech. Phys. Solids
,
40
(
2
), pp.
239
271
.
34.
Shimizu
,
F.
,
Ogata
,
S.
, and
Li
,
J.
,
2007
, “
Theory of Shear Banding in Metallic Glasses and Molecular Dynamics Calculations
,”
Mater. Trans.
,
48
(
11
), pp.
2923
2927
.
35.
Gorman
,
J. A.
,
Wood
,
D. S.
, and
Vreeland
,
T.
,
1969
, “
Mobility of Dislocations in Aluminum
,”
J. Appl. Phys.
,
40
(
2
), pp. 833–841.
36.
Chang
,
J. P.
,
Cai
,
W.
,
Bulatov
,
V. V.
, and
Yip
,
S.
,
2001
, “
Dislocation Motion in BCC Metals by Molecular Dynamics
,”
Mater. Sci. Eng. A
,
309–310
, pp.
160
163
.
37.
Berry
,
J.
,
Grant
,
M.
, and
Elder
,
K. R.
,
2006
, “
Diffusive Atomistic Dynamics of Edge Dislocations in Two Dimensions
,”
Phys. Rev. E
,
73
(
3
), p.
031609
.
You do not currently have access to this content.