Thin metal-polymer laminates make excellent materials for use in inflatable space structures. By inflating a stowed envelope using pressurized gas and by increasing the internal pressure slightly beyond the yield point of the metal films, the shell rigidizes in the deployed shape. Structures constructed with such materials retain the deployed geometry once the inflation gas has either leaked away, or it has been intentionally vented. For flight, these structures must be initially folded and stowed. This paper presents a numerical method for predicting the force required to achieve a given fold radius in a three-ply metal-polymer-metal laminate and to obtain the resultant springback. A coupon of the laminate is modeled as a cantilever subject to an increasing tip force. Fully elastic, elastic–plastic, relaxation, and springback stages are included in the model. The results show good agreement when compared with experimental data at large curvatures.

References

References
1.
Talentino
,
J. P.
,
1966
, “
Development of the Fabrication and Packaging Techniques for the ECHO II Satellite
,” NASA Goddard Space Flight Center, Greenbelt, MD, Technical Report No.
X-724-66-568
.https://ntrs.nasa.gov/search.jsp?R=19670014586
2.
Teichman
,
L. A.
,
1968
, “
The Fabrication and Testing of PAGEOS I
,” National Aeronautics and Space Administration, Hampton, VA, Technical Report No.
TN D-4596
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19680016348.pdf
3.
Viquerat
,
A.
,
Schenk
,
M.
,
Sanders
,
B.
, and
Lappas
,
V.
,
2014
, “
Inflatable Rigidisable Mast for End-of-Life Deorbiting System
,”
European Conference on Spacecraft Structures, Materials and Environmental Testing (SSMET)
, Brunswick, Germany, Apr. 1–4, Paper No.
ESA-SP Vol. 727
.http://www.markschenk.com/research/files/SSMET2014-InflateSail.pdf
4.
Secheli
,
G.
,
Viquerat
,
A.
, and
Aglietti
,
G.
,
2016
, “
Mechanical Development of a Novel Inflatable and Rigidizable Structure
,”
AIAA
Paper No. 2016-1220.
5.
Cadogan
,
D. P.
, and
Scarborough
,
S. E.
,
2001
, “
Rigidizable Materials for Use in Gossamer Space Inflatable Structures
,”
AIAA
Paper No. 2001-1417.
6.
Lou
,
M.
,
Fang
,
H.
, and
Hsia
,
L.
,
2000
, “
A Combined Analytical and Experimental Study on Space Inflatable Booms
,”
Aerospace Conference
, Big Sky, MT, Mar. 25, pp.
503
511
.
7.
Fang
,
H.
,
Lou
,
M.
, and
Hah
,
J.
,
2006
, “
Deployment Study of a Self-Rigidizable Inflatable Boom
,”
J. Spacecr. Rockets
,
43
(
1
), pp.
25
30
.
8.
Singer
,
J.
,
Arbocz
,
J.
, and
Weller
,
T.
,
2002
,
Buckling Experiments, Experimental Methods in Buckling of Thin-Walled Structures
, Vol.
2
.
Wiley
,
Chichester, UK
, pp.
809
831
.
9.
Kobayashi
,
T.
, and
Mihara
,
Y.
,
2006
, “
Postbuckling Analyses of Elastic Cylindrical Shells Under Axial Compression
,”
ASME
Paper No. PVP2009-77350.
10.
Bisshopp
,
K. E.
, and
Drucker
,
D. C.
,
1945
, “
Large Deflection of Cantilever Beams
,”
Q. Appl. Math.
,
3
(
3
), pp.
272
275
.
11.
Beléndez
,
T.
,
Neipp
,
C.
, and
Beléndez
,
A.
,
2002
, “
Large and Small Deflections of a Cantilever Beam
,”
Eur. J. Phys.
,
23
(
3
), p.
371
.
12.
Beléndez
,
T.
,
Neipp
,
C.
, and
Beléndez
,
A.
,
2003
, “
Numerical and Experimental Analysis of a Cantilever Beam: A Laboratory Project to Introduce Geometric Nonlinearity in Mechanics of Materials
,”
Int. J. Eng. Educ.
,
19
(
6
), pp.
885
892
.https://www.ijee.ie/articles/Vol19-6/IJEE1457.pdf
13.
MacNeal
,
R. H.
, and
Robbins
,
W. M.
,
1967
, “
Tensile Properties of a Tape With a Transverse Crease
,” ASTRO Research Corporation, Santa Barbara, CA, Technical Report No. NAS7-426.
14.
Greschik
,
G.
, and
Mikulas
,
M.
,
1996
, “
On Imperfections and Stowage Creases in Aluminum-Rigidized Inflated Cylinders
,”
AIAA
Paper No. 96-1332.
15.
Secheli
,
G.
,
Viquerat
,
A.
, and
Lappas
,
V.
,
2015
, “
An Examination of Crease Removal in Rigidizable Inflatable Metal-Polymer Laminate Cylinders
,”
AIAA
Paper No. 2015-0681.
16.
Satou
,
Y.
, and
Furuya
,
H.
,
2011
, “
Mechanical Properties of z-Fold Membrane Under Elasto-Plastic Deformation
,”
J. Space Eng.
,
4
(
1
), pp.
14
26
.
17.
Delimont
,
I. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Evaluating Compliant Hinge Geometries for Origami-Inspired Mechanisms
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011009
.
18.
Wheeler
,
C. M.
, and
Culpepper
,
M. L.
,
2016
, “
Soft Origami: Classification Constant and Actuation of Highly Compliant Origami Structures
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051012
.
19.
Peraza Hernandez
,
E. A.
,
Hartl
,
D. J.
,
Akleman
,
E.
, and
Lagoudas
,
D. C.
,
2016
, “
Modeling and Analysis of Origami Structures With Smooth Folds
,”
Comput.-Aided Des.
,
78
, pp.
93
106
.
20.
Yu
,
T.
, and
Johnson
,
W.
,
1982
, “
Influence of Axial Force on the Elastic-Plastic Bending and Springback of a Beam
,”
J. Mech. Working Technol.
,
6
(
1
), pp.
5
21
.
21.
El-Megharbel
,
A.
,
El-Domiaty
,
A.
, and
Shaker
,
M.
,
1990
, “
Springback and Residual Stresses After Stretch Bending of Workhardening Sheet Metal
,”
J. Mater. Process. Technol.
,
24
, pp.
191
200
.
22.
Tagarielli
,
V. L.
, and
Fleck
,
N. A.
,
2004
, “
A Comparison of the Structural Response of Clamped and Simply Supported Sandwich Beams With Aluminium Faces and a Metal Foam Core
,”
ASME J. Appl. Mech.
,
72
(
3
), pp.
408
417
.
23.
Zhang
,
J.
,
Qin
,
Q.
,
Xiang
,
C.
, and
Wang
,
T. J.
,
2016
, “
Plastic Analysis of Multilayer Sandwich Beams With Metal Foam Cores
,”
Acta Mech.
,
227
(
9
), pp.
2477
2491
.
24.
Schenk
,
M.
,
Viquerat
,
A.
,
Steffen
,
K.
, and
Guest
,
S. D.
,
2014
, “
Review of Inflatable Booms for Deployable Space Structures: Packing and Rigidization
,”
J. Spacecr. Rockets
,
51
(
3
), pp.
762
778
.
25.
Katsumata
,
N.
,
Fujii
,
R.
,
Natori
,
M. C.
, and
Yamakawa
,
H.
,
2010
, “
Membrane Space Structure Models With Inflatable Tubes
,”
27th International Symposium on Space Technology and Science
, Tsukuba, Japan, July 5–12.
26.
Schenk
,
M.
,
Kerr
,
S. G.
,
Smyth
,
A. M.
, and
Guest
,
S. D.
,
2013
, “
Inflatable Cylinders for Deployable Space Structures
,”
First Conference Transformables
, Seville, Spain, Sept. 18–20.http://www.markschenk.com/research/files/schenk2013-Transformables.pdf
27.
Beer
,
F. P.
,
Johnston
,
J. E. R.
,
DeWolf
,
J. T.
, and
Mazurek
,
D. F.
,
2009
,
Mechanics of Materials
,
5th ed.
,
McGraw-Hill
, New York, pp.
230
233
.
28.
Price
,
H. L.
,
1966
, “
Techniques for the Measurement of the Flexural Rigidity of Thin Films and Laminates
,” NASA Langley Research Center, Hampton, VA, Technical Report No. D-3270.
29.
Klein
,
M.
,
Hadrboletz
,
A.
,
Weiss
,
B.
, and
Khatibi
,
G.
,
2001
, “
The ‘Size Effect’ on the Stress Strain, Fatigue and Fracture Properties of Thin Metallic Foils
,”
Mater. Sci. Eng. A
,
319–321
, pp.
924
928
.
30.
Kao-Walter
,
S.
,
Dahlström
,
J.
,
Karlsson
,
T.
, and
Magnusson
,
A.
,
2004
, “
A Study of the Relation Between the Mechanical Properties and the Adhesion Level in a Laminated Packaging Material
,”
Mech. Compos. Mater.
,
40
(
1
), pp.
29
36
.
31.
Hussain
,
M.
, and
Viswanath
,
R.
,
2007
, “
Vibration-Based Technique for Young's Modulus Determination and Permanent Deformation Assessment of Sheet Materials
,”
Master's thesis
, Blekinge Institute of Technology, Karlskrona, Sweden.http://www.diva-portal.se/smash/get/diva2:830714/FULLTEXT01.pdf
32.
Lederer
,
M.
,
Gröger
,
V.
,
Khatibi
,
G.
, and
Weiss
,
B.
,
2010
, “
Size Dependency of Mechanical Properties of High Purity Aluminium Foils
,”
Mater. Sci. Eng. A
,
527
(
3
), pp.
590
599
.
33.
Knight
,
C.
,
2014
, “
Characterisation of Metal-Laminate Foils for Inflatable Space Structures
,” Master's thesis, University of Surrey, Guildford, UK.
34.
Malmberg
,
C.
, and
Käck
,
B.
,
2015
, “
Aluminium Foil at Multiple Length Scales, Mechanical Tests and Numerical Simulations in Abaqus
,”
Master's thesis
, Lund University, Lund, Sweden.https://lup.lub.lu.se/student-papers/search/publication/7451137
35.
ASM International
,
1990
,
ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
, Vol.
2
,
ASM International
,
Materials Park, OH
.
36.
Barton
,
S.
,
2016
, “
Investigation of the Mechanical Properties of Metal-Polymer Composite Materials for Space Applications
,” Master's thesis, University of Surrey, Guildford, UK.
37.
Dassault Systèmes
,
2014
, “
Abaqus Analysis User's Guide
,”
Solid (Continuum) Elements
,
6.14 ed.
,
Dassault Systèmes Simulia
, Providence, RI, Chap. 28.1.1.
38.
DuPontTM Teijin Films,
2003
, “
Mylar® Polyester Film, h-37232-3 ed. No. 222367D
,” DuPontTM Teijin Films, Hopewell, VA.
40.
MathWorks
,
2016
, “
Matlab Documentation—ode43
,” The MathWorks, Inc., Natick, MA, https://uk.mathworks.com/help/matlab/ref/ode45.html
You do not currently have access to this content.