For micro/nanosized contact problems, the influence of surface tension becomes prominent. Based on the solution of a point force acting on an elastic half space with surface tension, we formulate the contact between a rigid ellipsoid and an elastic substrate. The corresponding singular integral equation is solved numerically by using the Gauss–Chebyshev quadrature formula. When the size of contact region is comparable with the elastocapillary length, surface tension significantly alters the distribution of contact pressure and decreases the contact area and indent depth, compared to the classical Hertzian prediction. We generalize the explicit expression of the equivalent contact radius, the indent depth, and the eccentricity of contact ellipse with respect to the external load, which provides the fundament for analyzing nanoindentation tests and contact of rough surfaces.

References

1.
Style
,
R. W.
,
Hyland
,
C.
,
Boltyanskiy
,
R.
,
Wettlaufer
,
J. S.
, and
Dufresne
,
E. R.
,
2013
, “
Surface Tension and Contact With Soft Elastic Solids
,”
Nat. Commun.
,
4
, p.
2728
.
2.
Huang
,
Z. P.
, and
Sun
,
L.
,
2007
, “
Size-Dependent Effective Properties of a Heterogeneous Material With Interface Energy Effect: From Finite Deformation Theory to Infinitesimal Strain Analysis
,”
Acta Mech.
,
190
(
1–4
), pp.
151
163
.
3.
Wang
,
G. F.
, and
Feng
,
X. Q.
,
2009
, “
Timoshenko Beam Model for Buckling and Vibration of Nanowires With Surface Effects
,”
J. Phys. D: Appl. Phys.
,
42
(
15
), p.
155411
.
4.
Andreotti
,
B.
,
Bäumchen
,
O.
,
Boulogne
,
F.
,
Daniels
,
K. E.
,
Dufresne
,
E. R.
,
Perrin
,
H.
,
Salez
,
T.
,
Snoeijer
,
J. H.
, and
Style
,
R. W.
,
2016
, “
Solid Capillarity: When and How Does Surface Tension Deform Soft Solids?
,”
Soft Matter.
,
12
(
12
), pp.
2993
2996
.
5.
Gerberich
,
W. W.
,
Tymiak
,
N. I.
,
Grunlan
,
J. C.
,
Horstemeyer
,
M. F.
, and
Baskes
,
M. I.
,
2002
, “
Interpretations of Indentation Size Effects
,”
ASME J. Appl. Mech.
,
69
(
4
), pp.
433
442
.
6.
Grierson
,
D. S.
,
Liu
,
J. J.
,
Carpick
,
R. W.
, and
Turner
,
K. T.
,
2013
, “
Adhesion of Nanoscale Asperities With Power-Law Profiles
,”
J. Mech. Phys. Solids
,
61
(
2
), pp.
597
610
.
7.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London Ser. A
,
295
(
1442
), pp.
300
319
.
8.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Thomas
,
T. R.
,
1975
, “
The Elastic Contact of a Rough Surface
,”
Wear
,
35
(
1
), pp.
87
111
.
9.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
(
1
), pp.
1
11
.
10.
Hajji
,
M. A.
,
1978
, “
Indentation of a Membrane on an Elastic Half Space
,”
ASME J. Appl. Mech.
,
45
(
2
), pp.
320
324
.
11.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
57
(
4
), pp.
291
323
.
12.
Gurtin
,
M. E.
,
Weissmüller
,
J.
, and
Larché
,
F.
,
1998
, “
A General Theory of Curved Deformable Interfaces in Solids at Equilibrium
,”
Philos. Mag. A
,
78
(
5
), pp.
1093
1109
.
13.
Huang
,
G. Y.
, and
Yu
,
S. W.
,
2006
, “
Effect of Surface Elasticity on the Interaction Between Steps
,”
ASME J. Appl. Mech.
,
74
(
4
), pp.
821
823
.
14.
He
,
L. H.
, and
Lim
,
C. W.
,
2006
, “
Surface Green Function for a Soft Elastic Half-Space: Influence of Surface Stress
,”
Int. J. Solids Struct.
,
43
(
1
), pp.
132
143
.
15.
Wang
,
G. F.
, and
Feng
,
X. Q.
,
2009
, “
Effects of Surface Stresses on Contact Problems at Nanoscale
,”
J. Appl. Phys.
,
101
(
1
), p.
013510
.
16.
Koguchi
,
H.
,
2008
, “
Surface Green Function With Surface Stresses and Surface Elasticity Using Stroh's Formalism
,”
ASME J. Appl. Mech.
,
75
(
6
), p.
061014
.
17.
Hayashi
,
T.
,
Koguchi
,
H.
, and
Nishi
,
N.
,
2013
, “
Contact Analysis for Anisotropic Elastic Materials Considering Surface Stress and Surface Elasticity
,”
J. Mech. Phys. Solids.
,
61
(
8
), pp.
1753
1767
.
18.
Long
,
J. M.
,
Wang
,
G. F.
,
Feng
,
X. Q.
, and
Yu
,
S. W.
,
2012
, “
Two-Dimensional Hertzian Contact Problem With Surface Tension
,”
Int. J. Solids Struct.
,
49
(
13
), pp.
1588
1594
.
19.
Long
,
J. M.
, and
Wang
,
G. F.
,
2013
, “
Effects of Surface Tension on Axisymmetric Hertzian Contact Problem
,”
Mech. Mater.
,
56
, pp.
65
70
.
20.
Gao
,
X.
,
Hao
,
F.
,
Fang
,
D.
, and
Huang
,
Z. P.
,
2013
, “
Boussinesq Problem With the Surface Effect and Its Application to Contact Mechanics at the Nanoscale
,”
Int. J. Solids Struct.
,
50
(
16
), pp.
2620
2630
.
21.
Liu
,
T.
,
Jagota
,
A.
, and
Hui
,
C. Y.
,
2015
, “
Adhesive Contact of a Rigid Circular Cylinder to a Soft Elastic Substrate—The Role of Surface Tension
,”
Soft Mater.
,
11
(
19
), pp.
3844
3851
.
22.
Hui
,
C. Y.
,
Liu
,
T.
,
Salez
,
T.
,
Raphael
,
E.
, and
Jagota
,
A.
,
2015
, “
Indentation of a Rigid Sphere Into an Elastic Substrate With Surface Tension and Adhesion
,”
Proc. R. Soc. A
,
471
(
2175
), p.
20140727
.
23.
Chen
,
T. Y.
,
Chiu
,
M. S.
, and
Weng
,
C. N.
,
2006
, “
Derivation of the Generalized Young–Laplace Equation of Curved Interfaces in Nanoscaled Solids
,”
J. Appl. Phys.
,
100
(
7
), p.
074308
.
24.
Ru
,
C. Q.
,
2010
, “
Simple Geometrical Explanation of Gurtin–Murdoch Model of Surface Elasticity With Clarification of Its Related Versions
,”
Sci. China Phys. Mech.
,
53
(
3
), pp.
536
544
.
25.
Shenoy
,
V. B.
,
2005
, “
Atomistic Calculations of Elastic Properties of Metallic FCC Crystal Surfaces
,”
Phys. Rev. B
,
71
(
9
), p.
094104
.
26.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
London.
27.
Erdogan
,
F.
, and
Gupta
,
G. D.
,
1972
, “
On the Numerical Solution of Singular Integral Equations
,”
Q. Appl. Math.
,
29
, pp.
525
534
.
28.
Shenoy
,
V. V.
, and
Sharma
,
A.
,
2001
, “
Pattern Formation in a Thin Solid Film With Interactions
,”
Phys. Rev. Lett.
,
86
(
1
), pp.
119
122
.
29.
Xu
,
X. J.
,
Jagota
,
A.
, and
Hui
,
C. Y.
,
2014
, “
Effects of Surface Tension on the Adhesive Contact of a Rigid Sphere to a Compliant Substrate
,”
Soft Mater.
,
10
(
26
), pp.
4625
4632
.
You do not currently have access to this content.