Traditional topology optimization is usually carried out with approaches where structural boundaries are represented in an implicit way. The aim of the present paper is to develop a topology optimization framework where both the shape and topology of a structure can be obtained simultaneously through an explicit boundary description and evolution. To this end, B-spline curves are used to describe the boundaries of moving morphable components (MMCs) or moving morphable voids (MMVs) in the structure and some special techniques are developed to preserve the smoothness of the structural boundary when topological change occurs. Numerical examples show that optimal designs with smooth structural boundaries can be obtained successfully with the use of the proposed approach.

References

References
1.
Prager
,
W.
, and
Rozvany
,
G. I. N.
,
1977
, “
Optimal Layout of Grillages
,”
J. Struct. Mech.
,
5
(
1
), pp.
1
18
.
2.
Cheng
,
K. T.
, and
Olhoff
,
N.
,
1981
, “
An Investigation Concerning Optimal Design of Solid Elastic Plate
,”
Int. J. Solids Struct.
,
17
(
3
), pp.
305
323
.
3.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
4.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
,
1991
, “
The COC Algorithm—Part II: Topological, Geometrical and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
(
1–3
), pp.
309
336
.
5.
Rozvany
,
G. I. N.
,
2009
, “
A Critical Review of Established Methods of Structural Topology Optimization
,”
Struct. Multidiscip. Optim.
,
37
(
3
), pp.
217
237
.
6.
Guo
,
X.
, and
Cheng
,
G. D.
,
2010
, “
Recent Development in Structural Design and Optimization
,”
Acta Mech. Sin.
,
26
(
6
), pp.
807
823
.
7.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches: A Comparative Review
,”
Struct. Multidiscip. Optim.
,
48
(
6
), pp.
1031
1055
.
8.
Deaton
,
J. D.
, and
Grandhi
,
R. V.
,
2014
, “
A Survey of Structural and Multidisciplinary Continuum Topology Optimization: Post 2000
,”
Struct. Multidiscip. Optim.
,
49
(
1
), pp.
1
38
.
9.
Sethian
,
J. A.
, and
Wiegmann
,
A.
,
2000
, “
Structural Boundary Design Via Level Set and Immersed Interface Methods
,”
J. Comput. Phys.
,
163
(
2
), pp.
489
528
.
10.
Wang
,
M. Y.
,
Wang
,
X. M.
, and
Guo
,
D. M.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1
), pp.
227
246
.
11.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A. M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
12.
Seo
,
Y. D.
,
Kim
,
H. J.
, and
Youn
,
S. K.
,
2010
, “
Shape Optimization and Its Extension to Topological Design Based on Isogeometric Analysis
,”
Int. J. Solids Struct.
,
47
(
11
), pp.
1618
1640
.
13.
Seo
,
Y. D.
,
Kim
,
H. J.
, and
Youn
,
S. K.
,
2010
, “
Isogeometric Topology Optimization Using Trimmed Spline Surfaces
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
49
), pp.
3270
3296
.
14.
Guo
,
X.
,
Zhang
,
W. S.
, and
Zhong
,
W. L.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
.
15.
Eschenauer
,
H. A.
,
Kobelev
,
V. V.
, and
Schumacher
,
A.
,
1994
, “
Bubble Method for Topology and Shape Optimization of Structures
,”
Struct. Optim.
,
8
(
1
), pp.
42
51
.
16.
Sokolowski
,
J.
, and
Zochowski
,
A.
,
1999
, “
On the Topological Derivative in Shape Optimization
,”
SIAM J. Control Optim.
,
37
(
4
), pp.
1251
1272
.
17.
Céa
,
J.
,
Garreau
,
S.
,
Guillaume
,
P.
, and
Masmoudi
,
M.
,
2000
, “
The Shape and Topological Optimizations Connection
,”
Comput. Methods Appl. Mech. Eng.
,
188
(
4
), pp.
713
726
.
18.
Kang
,
P.
, and
Youn
,
S. K.
,
2016
, “
Isogeometric Topology Optimization of Shell Structures Using Trimmed NURBS Surfaces
,”
Finite Elem. Anal. Des.
,
120
, pp.
18
40
.
19.
Zhang
,
W. S.
,
Yuan
,
J.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model
,”
Struct. Multidiscip. Optim.
,
53
(
6
), pp.
1243
1260
.
20.
Zhang
,
W. S.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
Lagrangian Description Based Topology Optimization—A Revival of Shape Optimization
,”
ASME J. Appl. Mech.
,
83
(
4
), p.
041010
.
21.
Guo
,
X.
,
Zhang
,
W. S.
,
Zhang
,
J.
, and
Yuan
,
J.
,
2016
, “
Explicit Structural Topology Optimization Based on Moving Morphable Components (MMC) With Curved Skeletons
,”
Comput. Methods Appl. Methods Eng.
,
310
, pp.
711
748
.
22.
Zhang
,
W. S.
,
Li
,
D.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
Minimum Length Scale Control in Structural Topology Optimization Based on the Moving Morphable Components (MMC) Approach
,”
Comput. Methods Appl. Mech. Eng.
,
311
, pp.
327
355
.
23.
Deng
,
J. D.
, and
Chen
,
W.
,
2016
, “
Design for Structural Flexibility Using Connected Morphable Components Based Topology Optimization
,”
Sci. China Technol. Sci.
,
59
(
6
), pp.
839
851
.
24.
Norato
,
J. A.
,
Bell
,
B. K.
, and
Tortorelli
,
D. A.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization With Discrete Elements
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
306
327
.
25.
Zhang
,
S.
,
Norato
,
J. A.
,
Gain
,
A. L.
, and
Lyu
,
N.
,
2016
, “
A Geometry Projection Method for the Topology Optimization of Plate Structures
,”
Struct. Multidiscip. Optim.
, epub.
26.
Salomon
,
D.
,
2006
,
Curves and Surfaces for Computer Graphics
,
Springer
,
New York
.
27.
Roth
,
S. D.
,
1982
, “
Ray Casting for Modeling Solids
,”
Comput. Graphics Image Process
,
18
(
2
), pp.
109
144
.
28.
Wei
,
P.
,
Wang
,
M. Y.
, and
Xing
,
X. H.
,
2010
, “
A Study on X-FEM in Continuum Structural Optimization Using a Level Set Model
,”
Comput. Aided Des.
,
42
(
8
), pp.
708
719
.
29.
Cai
,
S. Y.
,
Zhang
,
W. H.
,
Zhu
,
J. H.
, and
Gao
,
T.
,
2014
, “
Stress Constrained Shape and Topology Optimization With Fixed Mesh: A B-Spline Finite Cell Method Combined With Level Set Function
,”
Comput. Methods Appl. Mech. Eng.
,
278
(
7
), pp.
361
387
.
30.
Cai
,
S. Y.
, and
Zhang
,
W. H.
,
2015
, “
Stress Constrained Topology Optimization With Free-Form Design Domains
,”
Comput. Methods Appl. Mech. Eng.
,
289
, pp.
267
290
.
31.
Komkov
,
V.
,
Choi
,
K. K.
, and
Haug
,
E. J.
,
1986
,
Design Sensitivity Analysis of Structural Systems
,
Academic Press
,
Cambridge, MA
.
32.
Emmanuel
,
L.
, and
Patrick
,
L. T.
,
2003
,
Numerical Methods in Sensitivity Analysis and Shape Optimization
,
Springer
,
Berlin
.
33.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
34.
Shi
,
X.
,
Xu
,
R.
,
Li
,
Y.
,
Zhang
,
Y.
,
Ren
,
Z.
,
Gu
,
J.
,
Rogers
,
J.
, and
Huang
,
Y.
,
2014
, “
Mechanics Design for Stretchable, High Areal Coverage GaAs Solar Module on an Ultrathin Substrate
,”
ASME J. Appl. Mech.
,
81
(
12
), p.
124502
.
35.
Yuan
,
J. H.
,
Pharr
,
M.
,
Feng
,
X.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2016
, “
Design of Stretchable Electronics Against Impact
,”
ASME J. Appl. Mech.
,
83
(
10
), p.
101009
.
36.
Ma
,
Q.
, and
Zhang
,
Y.
,
2016
, “
Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111008
.
You do not currently have access to this content.