Over recent years, a lot of progress has been achieved in understanding of the relationship between localization and transport of energy in essentially nonlinear oscillatory systems. In this paper, we are going to demonstrate that the structure of the resonance manifold can be conveniently described in terms of canonical action–angle (AA) variables. Such formalism has important theoretical advantages: all resonance manifolds may be described at the same level of complexity, appearance of additional conservation laws on these manifolds is easily proven both in autonomous and nonautonomous settings. The harmonic balance-based complexification approach, used in many previous studies on the subject, is shown to be a particular case of the canonical formalism. Moreover, application of the canonic averaging allows treatment of much broader variety of dynamical models. As an example, energy exchanges in systems of coupled trigonometrical and vibro-impact oscillators are considered.

References

References
1.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1976
,
Mechanics
,
3rd ed.
,
Elsevier, Amsterdam
, The Netherlands.
2.
Goldstein
,
H.
,
Poole
,
C.
, and
Safko
,
J.
,
2002
,
Classical Mechanics
,
3rd ed.
,
Pearson Education International
,
Upper Saddle River, NJ
.
3.
Arnold
,
V. I.
,
1989
,
Mathematical Methods of Classical Mechanics
,
Springer
,
Berlin
.
4.
Percival
,
I.
, and
Richards
,
D.
,
1987
,
Introduction to Dynamics
,
Cambridge University Press
,
Cambridge
, UK.
5.
Arnold
,
V. I.
,
Kozlov
,
V. V.
, and
Neishtadt
,
A. I.
,
2006
,
Mathematical Aspects of Classical and Celestial Mechanics
,
Springer
,
Berlin
.
6.
Itin
,
A. P.
,
Neishtadt
,
A. I.
, and
Vasiliev
,
A. A.
,
2000
, “
Captures Into Resonance and Scattering on Resonance in Dynamics of a Charged Relativistic Particle in Magnetic Field and Electrostatic Wave
,”
Physica D
,
141
, pp.
281
296
.
7.
Zaslavsky
,
G. M.
,
2007
,
The Physics of Chaos in Hamiltonian Systems
,
Imperial College Press
, London.
8.
Chirikov
,
B. V.
,
1979
, “
A Universal Instability of Many-Dimensional Oscillator Systems
,”
Phys. Rep.
,
52
(
5
), pp.
263
379
.
9.
Fajans
,
J.
, and
Friedland
,
L.
,
2001
, “
Autoresonant (Nonstationary) Excitation of Pendulums, Plutinos, Plasmas, and Other Nonlinear Oscillators
,”
Am. J. Phys.
,
69
(
10
), pp.
1096
1102
.
10.
Fajans
,
J.
,
Gilson
,
E.
, and
Friedland
,
L.
,
1999
, “
Autoresonant (Nonstationary) Excitation of a Collective Nonlinear Mode
,”
Phys. Plasmas
,
6
(
12
), pp.
4497
4503
.
11.
Gendelman
,
O. V.
,
2001
, “
Transition of Energy to a Nonlinear Localized Mode in a Highly Asymmetric System of Two Oscillators
,”
Nonlinear Dyn.
,
25
, pp.
237
253
.
12.
Vakakis
,
A. F.
, and
Gendelman
,
O. V.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators II: Resonance Capture
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
42
48
.
13.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Kerschen
,
G.
,
Bergman
,
L. A.
,
McFarland
,
M. D.
, and
Lee
,
Y. S.
,
2008
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
, Vol.
I
and Vol. II,
Springer
,
Dordrecht, The Netherlands
.
14.
Manevitch
,
L. I.
,
Gourdon
,
E.
, and
Lamarque
,
C. H.
,
2007
, “
Towards the Design of an Optimal Energetic Sink in a Strongly Inhomogeneous Two-Degree-of-Freedom System
,”
ASME J. Appl. Mech.
,
74
(
6
), pp.
1078
1086
.
15.
Starosvetsky
,
Y.
,
Hasan
,
M. A.
,
Vakakis
,
A. F.
, and
Manevitch
,
L. I.
,
2012
, “
Strongly Nonlinear Beat Phenomena and Energy Exchanges in Weakly Coupled Granular Chains on Elastic Foundations
,”
SIAM J. Appl. Mech.
,
72
(
1
), pp.
337
361
.
16.
Hasan
,
M. A.
,
Starosvetsky
,
Y.
,
Vakakis
,
A. F.
, and
Manevitch
,
L. I.
,
2013
, “
Nonlinear Targeted Energy Transfer and Macroscopic Analog of the Quantum Landau-Zener Effect in Coupled Granular Chains
,”
Physica D
,
252
, pp.
46
58
.
17.
Quinn
,
D. D.
,
Gendelman
,
O. V.
,
Kerschen
,
G.
,
Sapsis
,
T. P.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2008
, “
Efficiency of Targeted Energy Transfers in Coupled Nonlinear Oscillators Associated With 1:1 Resonance Captures: Part I
,”
J. Sound Vib.
,
311
, pp.
1228
1248
.
18.
Starosvetsky
,
Y.
, and
Gendelman
,
O. V.
,
2009
, “
Vibration Absorption in Systems With a Nonlinear Energy Sink: Nonlinear Damping
,”
J. Sound Vib.
,
324
, pp.
916
939
.
19.
Manevitch
,
L. I.
,
2007
, “
New Approach to Beating Phenomenon in Coupled Nonlinear Oscillatory Chains
,”
Arch. Appl. Mech.
,
77
(
5
), pp.
301
312
.
20.
Manevitch
,
L. I.
,
2015
, “
A Concept of Limiting Phase Trajectories and Description of Highly Non-Stationary Resonance Processes
,”
Appl. Math. Sci.
,
9
, pp.
4269
4289
.
21.
Manevitch
,
L. I.
, and
Gendelman
,
O. V.
,
2011
,
Tractable Modes in Solid Mechanics
,
Springer
,
Berlin
.
22.
Eilbeck
,
J. C.
,
Lomdahl
,
P. C.
, and
Scott
,
A. C.
,
1985
, “
The Discrete Self-Trapping Equation
,”
Physica D
,
16
(
3
), pp.
318
338
.
23.
Flach
,
S.
, and
Gorbach
,
A.
,
2008
, “
Discrete Breathers—Advances in Theory and Applications
,”
Phys. Rep.
,
467
, pp.
1
116
.
24.
Hayashi
,
C.
,
2014
,
Nonlinear Oscillations in Physical Systems
,
Princeton University Press
, Princeton, NJ.
25.
Kovaleva
,
A.
, and
Manevitch
,
L. I.
,
2016
, “
Autoresonance Versus Localization in Weakly Coupled Oscillators
,”
Physica D
,
320
, pp.
1
8
.
26.
Manevitch
,
L. I.
,
Kovaleva
,
A.
, and
Sigalov
,
G.
,
2016
, “
Nonstationary Energy Localization vs Conventional Stationary Localization in Weakly Coupled Nonlinear Oscillators
,”
Regular Chaotic Dyn.
,
21
(
2
), pp.
147
159
.
27.
Domany
,
E.
, and
Gendelman
,
O. V.
,
2013
, “
Targeted Energy Transfer in Van der Pol–Duffing Oscillator With Nonlinear Energy Sink
,”
J. Sound Vib.
,
332
(
21
), pp.
5489
5507
.
28.
Pilipchuk
,
V. N.
,
2001
, “
Impact Modes in Discrete Vibrating Systems With Rigid Barriers
,”
Int. J. Non-Linear Mech.
,
36
(
6
), pp.
999
1012
.
29.
Pilipchuk
,
V. N.
,
2002
, “
Some Remarks on Non-Smooth Transformations of Space and Time for Vibrating Systems With Rigid Barriers
,”
J. Appl. Math. Mech.
,
66
(
1
), pp.
31
37
.
30.
Kauderer
,
H.
,
1958
,
Nichtlineare Mechanik
,
Springer
,
Berlin
.
31.
Pilipchuk
,
V. N.
,
2010
,
Nonlinear Dynamics: Between Linear and Impact Limits
,
Springer
,
Berlin
.
You do not currently have access to this content.