A novel nonlinear vibration reduction mechanism based on targeted energy transfer (TET) is proposed. Targeted energy transfer is a physical phenomenon that describes a one-way irreversible energy flow from a linear oscillator (LO) to a nonlinearizable (essentially) nonlinear auxiliary substructure, noted as nonlinear energy sink (NES). The optimal targeted energy transfer where NES is set on the optimal state is investigated in this study. Complexification-averaging methodology is used to derive the optimal TET of the undamped system for different initial conditions. It is revealed that the optimal TET is dependent on the energy, indicating that passive control of NES cannot be optimally set for arbitrary initial conditions. In addition, it is found that for the undamped system, the optimal phrase difference between the linear primary oscillator and the nonlinear attachment is π/2. From the perspective of active control, the NES can be taken as an actuator to keep the system vibrating on the optimal TET. An available modification form of the optimal equations is proposed for the impulse excitation with relatively small damping. The comparisons of the effectiveness of the optimal TET is validated by using numerical simulations with the excitations including impulse, harmonic, to input with sufficient bandwidth, and random signal. The design procedure would pave the way for practical implications of TET in active vibration control.

References

References
1.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
,
2008
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
, Vol. 156,
Springer Science and Business Media
,
Dordrecht
,
The Netherlands
.
2.
Gendelman
,
O.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
M'Closkey
,
R.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators—Part I: Dynamics of the Underlying Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
34
41
.
3.
Vakakis
,
A. F.
, and
Gendelman
,
O.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators—Part II: Resonance Capture
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
42
48
.
4.
Lee
,
Y. S.
,
Kerschen
,
G.
,
Vakakis
,
A. F.
,
Panagopoulos
,
P.
,
Bergman
,
L.
, and
McFarland
,
D. M.
,
2005
, “
Complicated Dynamics of a Linear Oscillator With a Light, Essentially Nonlinear Attachment
,”
Phys. D: Nonlinear Phenom.
,
204
(
1
), pp.
41
69
.
5.
Vaurigaud
,
B.
,
Savadkoohi
,
A. T.
, and
Lamarque
,
C. H.
,
2011
, “
Targeted Energy Transfer With Parallel Nonlinear Energy Sinks—Part I: Design Theory and Numerical Results
,”
Nonlinear Dyn.
,
66
(
4
), pp.
763
780
.
6.
Savadkoohi
,
A. T.
,
Vaurigaud
,
B.
,
Lamarque
,
C. H.
, and
Pernot
,
S.
,
2012
, “
Targeted Energy Transfer With Parallel Nonlinear Energy Sinks—Part II: Theory and Experiments
,”
Nonlinear Dyn.
,
67
(
1
), pp.
37
46
.
7.
Gendelman
,
O. V.
,
2008
, “
Targeted Energy Transfer in Systems With Nonpolynomial Nonlinearity
,”
J. Sound Vib.
,
315
(
3
), pp.
732
745
.
8.
Quinn
,
D. D.
,
Gendelman
,
O.
,
Kerschen
,
G.
,
Sapsis
,
T. P.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2008
, “
Efficiency of Targeted Energy Transfers in Coupled Nonlinear Oscillators Associated With 1:1 Resonance Captures—Part I
,”
J. Sound Vib.
,
311
(
3
), pp.
1228
1248
.
9.
Sapsis
,
T. P.
,
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
Kerschen
,
G.
, and
Quinn
,
D. D.
,
2009
, “
Efficiency of Targeted Energy Transfers in Coupled Nonlinear Oscillators Associated With 1:1 Resonance Captures—Part II: Analytical Study
,”
J. Sound Vib.
,
325
(
1
), pp.
297
320
.
10.
Jiang
,
X.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2003
, “
Steady State Passive Nonlinear Energy Pumping in Coupled Oscillators: Theoretical and Experimental Results
,”
Nonlinear Dyn.
,
33
(
1
), pp.
87
102
.
11.
Gendelman
,
O. V.
,
Gourdon
,
E.
, and
Lamarque
,
C. H.
,
2006
, “
Quasi-Periodic Energy Pumping in Coupled Oscillators Under Periodic Forcing
,”
J. Sound Vib.
,
294
(
4
), pp.
651
662
.
12.
Gendelman
,
O. V.
, and
Starosvetsky
,
Y.
,
2007
, “
Quasi-Periodic Response Regimes of Linear Oscillator Coupled to Nonlinear Energy Sink Under Periodic Forcing
,”
ASME J. Appl. Mech.
,
74
(
2
), pp.
325
331
.
13.
Gendelman
,
O. V.
,
Starosvetsky
,
Y.
, and
Feldman
,
M.
,
2008
, “
Attractors of Harmonically Forced Linear Oscillator With Attached Nonlinear Energy Sink—I: Description of Response Regimes
,”
Nonlinear Dyn.
,
51
(
1–2
), pp.
31
46
.
14.
Starosvetsky
,
Y.
, and
Gendelman
,
O. V.
,
2008
, “
Attractors of Harmonically Forced Linear Oscillator With Attached Nonlinear Energy Sink—II: Optimization of a Nonlinear Vibration Absorber
,”
Nonlinear Dyn.
,
51
(
1–2
), pp.
47
57
.
15.
Manevitch
,
L. I.
,
Gourdon
,
E.
, and
Lamarque
,
C. H.
,
2007
, “
Parameters Optimization for Energy Pumping in Strongly Nonhomogeneous 2dof System
,”
Chaos Solitons Fractals
,
31
(
4
), pp.
900
911
.
16.
Gourc
,
E.
,
Michon
,
G.
,
Seguy
,
S.
, and
Berlioz
,
A.
,
2014
, “
Experimental Investigation and Design Optimization of Targeted Energy Transfer Under Periodic Forcing
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021021
.
17.
AL-Shudeifat
,
M. A.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2015
, “
Shock Mitigation by Means of Low- to High-Frequency Nonlinear Targeted Energy Transfers in a Large-Scale Structure
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
2
), p.
021006
.
18.
Detroux
,
T.
,
Habib
,
G.
,
Masset
,
L.
, and
Kerschen
,
G.
,
2015
, “
Performance, Robustness and Sensitivity Analysis of the Nonlinear Tuned Vibration Absorber
,”
Mech. Syst. Signal Process.
,
60
, pp.
799
809
.
19.
Wang
,
J.
,
Wierschem
,
N.
,
Spencer
,
B. F.
, and
Lu
,
X.
,
2015
, “
Experimental Study of Track Nonlinear Energy Sinks for Dynamic Response Reduction
,”
Eng. Struct.
,
94
, pp.
9
15
.
20.
Xiong
,
H.
,
Kong
,
X.
,
Yang
,
Z.
, and
Liu
,
Y.
,
2015
, “
Response Regimes of Narrow-Band Stochastic Excited Linear Oscillator Coupled to Nonlinear Energy Sink
,”
Chin. J. Aeronaut.
,
28
(
2
), pp.
457
468
.
21.
Manevitch
,
L. I.
,
1999
, “
Complex Representation of Dynamics of Coupled Nonlinear Oscillators
,”
Mathematical Models of Nonlinear Excitations, Transfer, Dynamics, and Control in Condensed Systems and Other Media
,
Springer
,
New York
, pp.
269
300
.
22.
Manevitch
,
L. I.
,
Musienko
,
A. I.
, and
Lamarque
,
C. H.
,
2007
, “
New Analytical Approach to Energy Pumping Problem in Strongly Nonhomogeneous 2dof Systems
,”
Meccanica
,
42
(
1
), pp.
77
83
.
23.
Vakakis
,
A. F.
,
2001
, “
Inducing Passive Nonlinear Energy Sinks in Vibrating Systems
,”
ASME J. Vib. Acoust.
,
123
(
3
), pp.
324
332
.
24.
Vakakis
,
A. F.
,
McFarland
,
D. M.
,
Bergman
,
L.
,
Manevitch
,
L. I.
, and
Gendelman
,
O.
,
2004
, “
Isolated Resonance Captures and Resonance Capture Cascades Leading to Single- or Multi-Mode Passive Energy Pumping in Damped Coupled Oscillators
,”
ASME J. Vib. Acoust.
,
126
(
2
), pp.
235
244
.
25.
AL-Shudeifat
,
M. A.
,
2015
, “
Asymmetric Magnet-Based Nonlinear Energy Sink
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
014502
.
26.
Guo
,
C.
,
AL-Shudeifat
,
M. A.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
, and
Yan
,
J.
,
2015
, “
Vibration Reduction in Unbalanced Hollow Rotor Systems With Nonlinear Energy Sinks
,”
Nonlinear Dyn.
,
79
(
1
), pp.
527
538
.
27.
Jiang
,
X.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2003
, “
Steady State Passive Nonlinear Energy Pumping in Coupled Oscillators: Theoretical and Experimental Results
,”
Nonlinear Dyn.
,
33
(
1
), pp.
87
102
.
28.
Habib
,
G.
,
Detroux
,
T.
,
Viguié
,
R.
, and
Kerschen
,
G.
,
2015
, “
Nonlinear Generalization of Den Hartog's Equal-Peak Method
,”
Mech. Syst. Signal Process.
,
52–53
, pp.
17
28
.
29.
Luongo
,
A.
, and
Zulli
,
D.
,
2015
, “
Nonlinear Energy Sink to Control Elastic Strings: The Internal Resonance Case
,”
Nonlinear Dyn.
,
81
(
1
), pp.
1
11
.
30.
Blanchard
,
A.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2015
, “
Damping-Induced Interplay Between Vibrations and Waves in a Forced Non-Dispersive Elastic Continuum With Asymmetrically Placed Local Attachments
,”
Proc. R. Soc. London, Ser. A
,
471
(
2176
), p.
20140402
.
31.
Shao
,
J.
,
Wu
,
X.
, and
Cochelin
,
B.
,
2014
, “
Targeted Energy Transfer in Two Degrees-of-Freedom Linear System Coupled by One Nonlinear Absorber
,”
21st International Congress on Sound and Vibration
,
ICSV21
,
Beijing, China
, July 13–17.
32.
Vakakis
,
A.
,
Hasan
,
A. M.
,
Starosvetsky
,
Y.
, and
Manevitch
,
L. I.
,
2013
, “
Energy Transfers in Coupled Ordered Granular Chains With No Precompression
,”
APS Meeting Abstracts
, Vol.
1
, p.
29010
.
33.
Vakakis
,
A.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Lee
,
Y. S.
, and
Kurt
,
M.
,
2011
, “
Current Efforts Towards a Non-Linear System Identification Methodology of Broad Applicability
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
11
), pp.
2497
2515
.
34.
Kerschen
,
G.
,
Gendelman
,
O.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
, and
McFarland
,
D. M.
,
2008
, “
Impulsive Periodic and Quasi-Periodic Orbits of Coupled Oscillators With Essential Stiffness Nonlinearity
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
5
), pp.
959
978
.
35.
Gendelman
,
O. V.
,
Sapsis
,
T.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2011
, “
Enhanced Passive Targeted Energy Transfer in Strongly Nonlinear Mechanical Oscillators
,”
J. Sound Vib.
,
330
(
1
), pp.
1
8
.
36.
Nucera
,
F.
,
Vakakis
,
A. F.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Kerschen
,
G.
,
2007
, “
Targeted Energy Transfers in Vibro-Impact Oscillators for Seismic Mitigation
,”
Nonlinear Dyn.
,
50
(
3
), pp.
651
677
.
37.
Hubbard
,
S. A.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2010
, “
Targeted Energy Transfer Between a Model Flexible Wing and Nonlinear Energy Sink
,”
J. Aircr.
,
47
(
6
), pp.
1918
1931
.
38.
McFarland
,
D. M.
,
Kerschen
,
G.
,
Kowtko
,
J. J.
,
Lee
,
Y. S.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2005
, “
Experimental Investigation of Targeted Energy Transfers in Strongly and Nonlinearly Coupled Oscillators
,”
J. Acoust. Soc. Am.
,
118
(
2
), pp.
791
799
.
39.
Vakakis
,
A. F.
,
AL-Shudeifat
,
M. A.
, and
Hasan
,
M. A.
,
2014
, “
Interactions of Propagating Waves in a One-Dimensional Chain of Linear Oscillators With a Strongly Nonlinear Local Attachment
,”
Meccanica
,
49
(
10
), pp.
2375
2397
.
You do not currently have access to this content.