This contribution investigates the extension of the microplane formulation to the description of transversely isotropic materials such as shale rock, foams, unidirectional composites, and ceramics. Two possible approaches are considered: (1) the spectral decomposition of the stiffness tensor to define the microplane constitutive laws in terms of energetically orthogonal eigenstrains and eigenstresses and (2) the definition of orientation-dependent microplane elastic moduli. The first approach, as demonstrated previously, provides a rigorous way to tackle anisotropy within the microplane framework, which is reviewed and presented herein in a clearer manner; whereas the second approach represents an approximation which, however, makes the formulation of nonlinear constitutive equations much simpler. The efficacy of the second approach in modeling the macroscopic elastic behavior is compared to the thermodynamic restrictions of the anisotropic parameters showing that a significant range of elastic properties can be modeled with excellent accuracy. Further, it is shown that it provides a very good approximation of the microplane stresses provided by the first approach, with the advantage of a simpler formulation. It is concluded that the spectral stiffness decomposition represents the best approach in such cases as for modeling composites, in which accurately capturing the elastic behavior is important. The introduction of orientation-dependent microplane elastic moduli provides a simpler framework for the modeling of transversely isotropic materials with remarked inelastic behavior, as in the case, for example, of shale rock.

References

References
1.
Lemaitre
,
J.
, and
Desmorat
,
R.
,
2005
,
Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures
,
Springer Verlag
,
New York
.
2.
Bažant
,
Z. P.
, and
Planas
,
J.
,
1997
,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC Press
,
Boca Raton, FL
.
3.
Brocca
,
M.
,
Bažant
,
Z. P.
, and
Daniel
, I
. M.
,
2001
, “
Microplane Model for Stiff Foams and Finite Element Analysis of Sandwich Failure by Core Indentation
,”
Int. J. Solids Struct.
,
38
(
44–45
), pp.
8111
8132
.
4.
Bažant
,
Z. P.
, and
Oh
,
B.-H.
,
1983
, “
Microplane Model for Fracture Analysis of Concrete Structures
,”
Symposium on the Interaction of Non-Nuclear Munitions With Structures
, Colorado Springs, CO, pp.
49
53
.
5.
Bažant
,
Z. P.
, and
Oh
,
B.-H.
,
1985
, “
Microplane Model for Progressive Fracture of Concrete and Rock
,”
J. Eng. Mechanics, Trans. ASCE
111
(
4
), pp.
559
582
.
6.
Bažant
,
Z. P.
,
Caner
,
F. C.
,
Carol
,
I.
,
Adley
,
M. D.
, and
Akers
,
S. A.
,
2000
, “
Microplane Model M4 for Concrete: I. Formulation With Work-Conjugate Deviatoric Stress
,”
J. Eng. Mechanics, Trans. ASCE
,
126
(
9
), pp.
944
953
.
7.
Bažant
,
Z. P.
,
Adley
,
M. D.
,
Carol
,
I.
,
Jirásek
,
M.
,
Akers
,
S. A.
,
Rohani
,
B.
,
Cargile
,
J. D.
, and
Caner
,
F. C.
,
2000
, “
Large-Strain Generalization of Microplane Model for Concrete and Application
,”
J. Eng. Mechanics, Trans. ASCE
,
126
(
9
), pp.
971
980
.
8.
Bažant
,
Z. P.
, and
Prat
,
P. C.
,
1988
, “
Microplane Model for Brittle Plastic Material: I. Theory
,”
J. Eng. Mech. ASCE
,
114
(
10
), pp.
1672
1688
.
9.
Bažant
,
Z. P.
,
Xiang
,
Y.
, and
Prat
,
P. C.
,
1996
, “
Microplane Model for Concrete. I. Stress-Strain Boundaries and Finite Strain
,”
J. Eng. Mech. ASCE
,
122
(
3
), pp.
245
254
.
10.
Caner
,
F. C.
, and
Bažant
,
Z. P.
,
2000
, “
Microplane Model M4 for Concrete. II: Algorithm and Calibration
,”
J. Eng. Mech. Trans. ASCE
,
126
(
9
), pp.
954
961
.
11.
Bažant
,
Z. P.
,
Di Luzio
,
G.
,
2004
, “
Nonlocal Microplane Model With Strain-Softening Yield Limits
,”
Int. J. Solids Struct.
,
41
(
24–25
), pp.
7209
7240
.
12.
Bažant
,
Z. P.
, and
Caner
,
F. C.
,
2005
, “
Microplane Model M5 With Kinematic and Static Constraints for Concrete Fracture and Anelasticity. I Theory
,”
J. Eng. Mech. ASCE
,
130
(
1
), pp.
31
40
.
13.
Bažant
,
Z. P.
, and
Caner
,
F. C.
,
2005
, “
Microplane Model M5 With Kinematic and Static Constraints for Concrete Fracture and Anelasticity. II Computation
,”
J. Eng. Mech. ASCE
,
130
(
1
), pp.
41
47
.
14.
Bažant
,
Z. P.
, and
Zi
,
G.
,
2003
, “
Microplane Constitutive Model for Porous Isotropic Rock
,”
Int. J. Numer. Anal. Methods Geomech.
,
27
(
1
), pp.
25
47
.
15.
Bažant
,
Z. P.
, and
Prat
,
P. C.
,
1987
, “
Creep of Anisotropic Clay: New Microplane Model
,”
J. Eng. Mech. ASCE
,
113
(
7
), pp.
1000
1064
.
16.
Brocca
,
M.
, and
Bažant
,
Z. P.
,
2001
, “
Microplane Finite Element Analysis of Tube-Squash Test of Concrete With Angle up to 70°
,”
Int. J. Numer. Methods Eng.
,
52
(
10
), pp.
1165
1188
.
17.
Beghini
,
A.
,
Bažant
,
Z. P.
,
Zhou
,
Y.
,
Gouirand
,
O.
, and
Caner
,
F. C.
,
2007
, “
Microplane Model M5f for Multiaxial Behavior and Fracture of Fiber Reinforced Concrete
,”
ASCE J. Eng. Mech.
,
133
(
1
), pp.
66
75
.
18.
Caner
,
F. C.
, and
Bažant
,
Z. P.
,
2011
, “
Microplane Model M6f for Fiber Reinforced Concrete
,”
XI Int. Conference on Computational Plasticity Fundamentals and Applications, COMPLAS 2011
, Barcelona, Spain, pp.
796
807
.
19.
Caner
,
F.
, and
Bazǎnt
,
Z. P.
,
2013
, “
Microplane Model M7 for Plain Concrete. I: Formulation
,”
J. Eng. Mech.
,
139
(
12
), pp.
1714
1723
.
20.
Caner
,
F.
, and
Bazǎnt
,
Z. P.
,
2013
, “
Microplane Model M7 for Plain Concrete. II: Calibration and Verification
,”
J. Eng. Mech.
,
139
(
12
), pp.
1724
1735
.
21.
Kirane
,
K.
, and
Bazǎnt
,
Z. P.
,
2015
, “
Microplane Damage Model for Fatigue of Quasi-Brittle Materials: Sub-Critical Crack Growth, Lifetime and Residual Strength
,”
Int. J. Fatigue
,
70
, pp.
93
105
.
22.
Cusatis
,
G.
, and
Zhou
,
X.
,
2014
, “
High-Order Microplane Theory for Quasi-Brittle Materials With Multiple Characteristic Lengths
,”
J. Eng. Mech.
,
140
(
7
), p.
04014046
.
23.
Mohr
,
O.
,
1900
, “
Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials
,”
Z. Ver. Dtsch. Ing.
,
46
, pp.
1524
1530; 1572–1577
.
24.
Taylor
,
G. I.
,
1938
, “
Plastic Strain in Metals
,”
J. Inst. Metals
,
62
, pp.
307
324
.
25.
Batdorf
,
S. B.
, and
Budiansky
,
B.
,
1949
, “
A Mathematical Theory of Plasticity Based on the Concept of Slip
,” National Advisory Committee for Aeronautics, Washington, DC,
Technical Note No. 1871
.
26.
Brocca
,
M.
, and
Bažant
,
Z. P.
,
2000
, “
Microplane Constitutive Model and Metal Plasticity
,”
ASME Appl. Mech. Rev.
,
53
(
10
), pp.
265
281
.
27.
Cusatis
,
G.
,
Beghini
,
H.
, and
Bažant
,
Z. P.
,
2008
, “
Spectral Stiffness Microplane Model for Quasibrittle Composite Laminates–Part I: Theory
,”
ASME J. Appl. Mech.
,
75
(
2
), p.
021009
.
28.
Chang
,
K. T.
, and
Sture
,
S.
,
2006
, “
Microplane Modeling of Sand Behavior Under Non-Proportional Loading
,”
Comput. Geotech.
,
33
(
3
), pp.
177
178
.
29.
Brocca
,
M.
,
Brinson
,
L. C.
, and
Bažant
,
Z. P.
,
2002
, “
Three-Dimensional Constitutive Model for Shape Memory Alloys Based on Microplane Model
,”
J. Mech. Phys. Solids
,
50
(
5
), pp.
1051
1077
.
30.
Cusatis
,
G.
,
Beghini
,
H.
, and
Bažant
,
Z. P.
,
2008
, “
Spectral Stiffness Microplane Model for Quasibrittle Composite Laminates–Part II: Calibration and Validation
,”
ASME J. Appl. Mech.
,
75
(
2
), p.
021010
.
31.
Caner
,
F. C.
,
Bažant
,
Z. P.
,
Hoover
,
C.
,
Waas
,
A.
, and
Shahwan
,
K.
,
2011
, “
Microplane Model for Fracturing Damage of Triaxially Braided Fiber-Polymer Composites
,”
ASME J. Eng. Mater. Technol.
,
133
(
2
), p.
021024
.
32.
Cusatis
,
G.
,
Mencarelli
,
A.
,
Pelessone
,
D.
, and
Baylot
,
J. T.
,
2011
, “
Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. II: Calibration and Validation
,”
Cem. Concr. Compos.
,
33
(
9
), pp.
891
905
.
33.
Cusatis
,
G.
,
Pelessone
,
D.
, and
Mencarelli
,
A.
,
2011
, “
Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. I: Theory
,”
Cem. Concr. Compos.
,
33
(
9
), pp.
881
890
.
34.
Bažant
,
Z. P.
, and
Kim
,
J.-K.
,
1986
, “
Creep of Anisotropic Clay: Microplane Model
,”
J. Geotech. Eng. ASCE
,
112
(
4
), pp.
458
475
.
35.
Carol
,
I.
, and
Bažant
,
Z. P.
,
1997
, “
Damage and Plasticity in Microplane Theory
,”
Int. J. Solids Struct.
,
34
(
29
), pp.
3807
3835
.
36.
Elbing
,
K.
,
1994
,
Foundation of Anisotropy for Exploration Seismic
,
Pergamon Press
,
Oxford, UK
.
37.
Gurtin
,
M. E.
,
1972
, “
The Linear Theory of Elasticity
,”
Handbuch der Physik
, Vol.
Via/2
, pp.
1
296
.
38.
Theocaris
,
P. S.
, and
Sokolis
,
D. P.
,
1998
, “
Spectral Decomposition of the Compliance Tensor for Anisotropic Plates
,”
J. Elasticity
,
51
(
2
), pp.
89
103
.
39.
Theocaris
,
P. S.
, and
Sokolis
,
D. P.
,
2000
, “
Spectral Decomposition of the Compliance Fourth-Rank Tensor for Orthotropic Materials
,”
Arch. Appl. Mech.
,
70
(
4
), pp.
289
306
.
40.
Theocaris
,
P. S.
, and
Sokolis
,
D. P.
,
1999
, “
Spectral Decomposition of the Linear Elastic Tensor for Monoclinic Symmetry
,”
Acta Crystallogr.
, A
55
(
4
), pp.
635
647
.
41.
Bazǎnt
,
Z. P.
, and
Oh
,
B.-H.
,
1986
, “
Efficient Numerical Integration on the Surface of a Sphere
,”
Z. Angew. Math. Mech.
,
66
(
1
), pp.
37
49
.
42.
Stroud
,
A. H.
,
1971
,
Approximate Calculation of Multiple Integrals
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
43.
Amadei
,
B.
,
1996
, “
Importance of Anisotropy When Estimation and Measuring In Situ Stresses in Rock
,”
Int. J. Rock Mech. Min. Sci. Geotech. Abstr.
,
33
(
3
), pp.
293
326
.
44.
Wang
,
Z.
,
2001
, “
Fundamentals of Seismic Rock Physics
,”
Geophysics
,
66
(
2
), pp.
398
412
.
45.
Lin
,
W.
,
1981
, “
Mechanical Behavior of Mesaverde Shale and Sandstone at High Pressure
,”
SPE/DOE
Low Permeability Gas Reservoirs Symposium
, Denver, CO, May 27–29, Paper No. SPE/DOE 9835.
46.
Bossart
,
P.
,
2011
, “
Characteristics of the Opalinus Clay at Mont Terri
,”
Mont Terri Project
, Wabern Switzerland.
47.
Cho
,
J. W.
,
Kim
,
H.
,
Jeon
,
S.
, and
Min
,
K. B.
,
2012
, “
Deformation and Strength Anisotropy of Asan Gneiss, Boryeong Shale, and Yeoncheon Schist
,”
Int. J. Rock Mech. Min. Sci.
,
50
, pp.
158
169
.
48.
Sone
,
H.
, and
Zoback
,
M. D.
,
2013
, “
Mechanical Properties of Shale Gas Reservoir Rocks–Part 1: Static and Dynamic Elastic Properties and Anisotropy
,”
Geophysics
,
78
(
5
), pp.
D381
D392
.
49.
Sone
,
H.
,
2012
, “
Mechanical Properties of Shale Gas Reservoir Rocks and its Relation to the In-Situ Stress Variation Observed in Shale Gas Reservoirs
,” Ph.D. thesis,
Stanford University
,
Standford, CA
.
50.
Waters
,
G. A.
,
Lewis
,
R. E.
, and
Bentley
,
D.
,
2011
, “
The Effect of Mechanical Properties Anisotropy in the Generation of Hydraulic Fractures in Organic Shales
,”
SPE
Annual Technical Conference and Exposition, Denver, CO, Oct. 30–Nov. 2. Paper No. SPE 146776.
51.
Gibson
,
L. J.
,
1989
, “
Modeling the Mechanical Behavior of Cellular Materials
,”
Mater. Sci. Eng. A
,
110
, pp.
1
36
.
52.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
,
Pergamon Press
,
Oxford, UK
.
53.
DIAB Group
,
2014
, “
Technical Data for Divinycell H Grade
,”
DIAB
, Laholm, Sweden.
54.
Tita
,
V.
,
Caliri
,
M. F.
,
Angelico
,
R. A.
, and
Canto
,
R. B.
,
2012
, “
Experimental Analyses of the Poly(vinyl chloride) Foams' Mechanical Anisotropic Behavior
,”
Polym. Eng. Sci.
,
52
(
12
), pp.
2654
2663
.
You do not currently have access to this content.