A simplified analytical pressure solution for thermal-acoustic wave response generated by using suspended multiwall carbon nanotube (MWCNT) thin film in different fluidic environments is developed. The solution consists of two independent portions: the near-field solution and the far-field solution. The electricity power input is a key element to control the thermal-acoustic wave pressure level. The dependence of the solution on axial distance from the source origin is investigated for different fluidic environments. Comparison between analytical solutions and published experimental results is presented, and excellent agreement is reported. A number of numerical examples for different parameters are studied for various liquids and gases including air, argon, water, and ethanol. Accurate analytical approximations for the thermal-acoustic wave response, and amplitude functions for different temperatures in fluids of varying densities are proposed here. The relation of Rayleigh distance and critical frequency has been determined in order to enhance and optimize the thermal-acoustic effect and wave behavior in fluids. These two parameters can be modified by suitable choices of the size of thin film, the properties of surrounding media, etc. The thermal-acoustic generation properties including the electric power input, frequency, and the suspended MWCNT thin film size significantly affect the acoustic pressure performance. It is concluded here that this extended analytical work not only agrees better with experiment but also offers more convincing analytical prediction for the generation and propagation of thermal-acoustic wave in different fluids.

References

1.
Arnold
,
H. D.
, and
Crandall
,
I. B.
,
1917
, “
The Thermophone as a Precision Source of Sound
,”
Phys. Rev.
,
10
(
1
), pp.
22
38
.
2.
Bailo
,
K. C.
,
Brei
,
D. E.
, and
Grosh
,
K.
,
2003
, “
Investigation of Curved Polymeric Piezoelectric Active Diaphragms
,”
ASME J. Vib. Acoust.
,
125
(
2
), pp.
145
154
.
3.
Alan Mcdonal
,
F.
, and
Wetsel
,
C.
,
1978
, “
Generalized Theory of the Photoacoustic Effect
,”
J. Appl. Phys.
,
49
(
4
), pp.
2313
2322
.
4.
Bell
,
A. G.
,
1880
, “
On the Production and Reproduction of Sound by Light
,”
J. Sci.
,
20
, pp.
305
324
.
5.
Aamodt
,
L. C.
,
Murphy
,
J. C.
, and
Parker
,
J. G.
,
1977
, “
Size Considerations in the Design of Cells for Photoacoustic Spectroscopy
,”
J. Appl. Phys.
,
48
(
3
), pp.
927
933
.
6.
Rosencwaig
,
A.
, and
Gersho
,
A.
,
1976
, “
Theory of the Photoacoustic Effect With Solids
,”
J. Appl. Phys.
,
47
(
1
), pp.
64
69
.
7.
Wetsel
,
G. C.
, Jr.
, and
McDonald
,
F. A.
,
1976
, “
Experimental Investigation of the Photoacoustic Effect in Liquids and Solids
,”
J. Acoust. Soc. Am.
,
60
, pp.
S52
S53
.
8.
Rosencwaig
,
A.
,
1980
, “
Photoacoustic Spectroscopy
,”
Ann. Rev. Biophys. Bioeng.
,
9
, pp.
31
54
.
9.
Hill
,
D. W.
, and
Powell
,
T.
,
1968
,
Non-Dispersive Infrared Gas Analysis in Science Medicine, and Industry
,
Plenum Press
,
New York
.
10.
Vesterinen
,
V.
,
Niskanen
,
A. O.
,
Hassel
,
J.
, and
Helistö
,
P.
,
2010
, “
Fundamental Efficiency of Nanothermophones: Modeling and Experiments
,”
Nano Lett.
,
10
(
12
), pp.
5020
5024
.
11.
Xiao
,
L.
,
Chen
,
Z.
,
Feng
,
C.
,
Liu
,
L.
,
Bai
,
Z.-Q.
,
Wang
,
Y.
,
Qian
,
L.
,
Zhang
,
Y.
,
Li
,
Q.
,
Jiang
,
K.
, and
Fan
,
S.
,
2008
, “
Flexible, Stretchable, Transparent Carbon Nanotube Thin Film Loudspeakers
,”
Nano Lett.
,
8
(
12
), pp.
4539
4545
.
12.
Shinoda
,
H.
,
Nakajima
,
T.
,
Ueno
,
K.
, and
Koshida
,
N.
,
1999
, “
Thermally Induced Ultrasonic Emission From Porous Silicon
,”
Nature
,
400
(
6747
), pp.
853
855
.
13.
Liu
,
K.
,
Sun
,
Y.
,
Chen
,
L.
,
Feng
,
C.
,
Feng
,
X.
,
Jiang
,
K.
,
Zhao
,
Y.
, and
Fan
,
S.
,
2008
, “
Controlled Growth of Super-Aligned Carbon Nanotube Arrays for Spinning Continuous Unidirectional Sheets With Tunable Physical Properties
,”
Nano Lett.
,
8
(
2
), pp.
700
705
.
14.
Aliev
,
A. E.
,
Lima
,
M. D.
,
Fang
,
S. L.
, and
Baughman
,
R. H.
,
2010
, “
Underwater Sound Generation Using Carbon Nanotube Projectors
,”
Nano Lett.
,
10
(
7
), pp.
2373
2380
.
15.
Lim
,
C. W.
,
Tong
,
L.-H.
, and
Li
,
Y.-C.
,
2013
, “
Theory of Suspended Carbon Nanotube Thin Film as a Thermal-Acoustic Source
,”
J. Sound Vib.
,
332
(
21
), pp.
5451
5461
.
16.
Tong
,
L.-H.
,
Lim
,
C. W.
, and
Li
,
Y.-C.
,
2013
, “
Gas-Filled Encapsulated Thermal-Acoustic Transducer
,”
ASME J. Vib. Acoust.
,
135
(
5
), p.
051033
.
17.
Hu
,
H.-P.
,
Wang
,
Y.-D.
, and
Wang
,
Z.-D.
,
2012
, “
Wideband Flat Frequency Response of Thermo-Acoustic Emission
,”
J. Phys. D
,
45
(
34
), pp.
345
401
.
18.
Raichel
,
D. R.
,
2005
,
The Science and Applications of Acoustics
,
Springer
,
New York
.
19.
David
,
R. L.
,
2003
,
Handbook of Chemistry and Physics
,
CRC Press
,
Boca Raton, FL
.
20.
Kinsler
,
L. E.
,
Frey
,
A. R.
,
Coppens
,
A. B.
, and
Sanders
,
J. V.
,
1982
,
Fundamentals of Acoustics
,
Academic Press
,
New York
.
21.
Marage
,
J. P.
, and
Mori
,
Y.
,
2010
,
Sonar and Underwater Acoustics
,
Wiley
,
London
.
22.
Tressler
,
J. F.
, and
Howarth
,
T. R.
,
2002
, “
A Comparison of the Underwater Acoustic Performance of Cymbal-Based Projectors to 1–3 Piezocomposite Material
,”
J. Electroceram.
,
8
(
2
), pp.
175
186
.
23.
Tong
,
L. H.
,
Lim
,
C. W.
,
Li
,
Y. C.
,
Zhang
,
C. Z.
, and
Bui
,
T. Q.
,
2014
, “
Generation of Mirage Effect by Heated Carbon Nanotube Thin Film
,”
J. Appl. Phys.
,
115
(
24
), p.
244905
.
24.
Tong
,
L. H.
,
Lim
,
C. W.
, and
Li
,
Y. C.
,
2014
, “
Generation of High-Intensity Focused Ultrasound by Carbon Nanotube Opto-Acoustic Lens
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081014
.
25.
Tong
,
L. H.
,
Lim
,
C. W.
,
Lai
,
S. K.
, and
Li
,
Y. C.
,
2015
, “
Gap Separation Effect on Thermoacoustic Wave Generation by Heated Suspended Nano-Thinfilm
,”
Appl. Therm. Eng.
,
86
, pp.
135
142
.
You do not currently have access to this content.