The stress–strain curves of brain stem in uniaxial compression demonstrate strain rate dependency and can be characterized with three regions: initial toe region, transitional region, and high strain region, suggesting strong viscoelastic behavior. To investigate the origin of this viscoelasticity at microscale, differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectra of brain stem tissue were recorded and analyzed. The emergence of endotherm thermal domains in DSC indicates that the conformation change of biomolecules can absorb and dissipate energy, explaining the viscous behavior of the brain stem. FTIR analyses indicate that the presence of polar functional groups such as amide, phosphate, and carboxyl groups in the biomolecules takes responsibility for the viscous performance of brain stem. Ogden, Fung, and Gent models were adopted to fit the experimental data, and Ogden model is the most apt one in capturing the stiffening of the brain stem with the increasing strain rate.

References

1.
Ning
,
X. G.
,
Zhu
,
Q. L.
,
Lanir
,
Y.
, and
Margulies
,
S. S.
,
2006
, “
A Transversely Isotropic Viscoelastic Constitutive Equation for Brainstem Undergoing Finite Deformation
,”
ASME J. Biomech. Eng.
,
128
(
6
), pp.
925
933
.
2.
Arbogast
,
K. B.
, and
Margulies
,
S. S.
,
1998
, “
Material Characterization of the Brainstem From Oscillatory Shear Tests
,”
J. Biomech.
,
31
(
9
), pp.
801
807
.
3.
Jellinger
,
K.
,
1983
, “
Secondary Brainstem Involvement in Blunt Head Injury
,”
Advances in Neurotraumatology
,
R.
Villani
,
I.
Papo
,
M.
Giovanelli
,
S.
Gaini
, and
G.
Tomei
, eds.,
Princeton University
,
Princeton, NJ
, pp.
58
66
.
4.
Abolfathi
,
N.
,
Naik
,
A.
,
Chafi
,
M. S.
,
Karami
,
G.
, and
Ziejewski
,
M.
,
2009
, “
A Micromechanical Procedure for Modelling the Anisotropic Mechanical Properties of Brain White Matter
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
3
), pp.
249
262
.
5.
Rashid
,
B.
,
Destrade
,
M.
, and
Gilchrist
,
M.
,
2012
, “
Temperature Effects on Brain Tissue in Compression
,”
J. Mech. Behav. Biomed. Mater.
,
14
, pp.
113
118
.
6.
Arbogast
,
K. B.
, and
Margulies
,
S. S.
,
1999
, “
A Fiber-Reinforced Composite Model of the Viscoelastic Behavior of the Brainstem in Shear
,”
J. Biomech.
,
32
(
8
), pp.
865
870
.
7.
Höhne
,
G. W. H.
,
Hemminger
,
W. F.
, and
Flammersheim
,
H. J.
,
2003
,
Differential Scanning Calorimetry
,
Springer
,
Berlin
.
8.
Gill
,
P.
,
Moghadam
,
T. T.
, and
Ranjbar
,
B.
,
2010
, “
Differential Scanning Calorimetry Techniques: Applications in Biology and Nanoscience
,”
J. Biomol. Tech.
,
21
(
4
), pp.
167
193
.
9.
Ferencz
,
A.
,
Nedvig
,
K.
,
Laszlo
,
E.
,
Magyarlaki
,
T.
, and
Lorinczy
,
D.
,
2011
, “
DSC Examination of Kidney Tissue Following Warm Ischemia and Reperfusion Injury
,”
Thermochim. Acta
,
525
(
1–2
), pp.
161
166
.
10.
Bpgnar
,
G.
,
Pinter
,
Cs.
,
Horvath
,
B.
,
Sydo
,
T.
,
Ligeti
,
E.
,
Pulai
,
J.
, and
Lorinczy
,
D.
,
2009
, “
DSC Analysis of Human Fat Tissue in Steroid Induced Osteonecrosis
,”
J. Therm. Anal. Calorim.
,
95
(
3
), pp.
769
774
.
11.
Charmas
,
B.
,
2013
, “
TG and DSC Studies of Bone Tissue: Effects of Osteoporosis
,”
Thermochim. Acta
,
573
, pp.
73
81
.
12.
Griffith
,
P. R.
, and
de Haseth
,
J. A.
,
1986
,
Fourier Transform Infrared Spectroscopy
,
Wiley
,
New York
.
13.
Berthomieu
,
C.
, and
Hienerwadel
,
R.
,
2009
, “
Fourier Transform Infrared (FTIR) Spectroscopy
,”
Photosynth. Res.
,
101
(
2
), pp.
157
170
.
14.
Movasaghi
,
Z.
,
Rehman
,
S.
, and
ur Rehman
,
D. I.
,
2008
, “
Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues
,”
Appl. Spectrosc. Rev.
,
43
(
2
), pp.
134
179
.
15.
Zhang
,
W.
,
Feng
,
L. L.
,
Wu
,
F.
,
Zhang
,
R. R.
, and
Wu
,
C. W.
, 2-16, “
Micro/Nano-Particle Decorated Metal Wire for Cutting Soft Matters
,”
Nanotechnology
(in press).
16.
Meaney
,
D. F.
,
2003
, “
Relationship Between Structural Modeling and Hyperelastic Material Behavior: Application to CNS White Matter
,”
Biomech. Model. Mechanobiol.
,
1
(
4
), pp.
279
293
.
17.
Jin
,
X.
,
Zhu
,
F.
,
Mao
,
H. J.
,
Shen
,
M.
, and
Yang
,
K. H.
,
2013
, “
A Comprehensive Experimental Study on Material Properties of Human Brain Tissue
,”
J. Biomech.
,
46
(
16
), pp.
2795
2801
.
18.
Farshad
,
M.
,
Barbezat
,
M.
,
Flüeler
,
P.
,
Schmidlin
,
F.
,
Graber
,
P.
, and
Niederer
,
P.
,
1999
, “
Material Characterization of the Pig Kidney in Relation With the Biomechanical Analysis of Renal Trauma
,”
J. Biomech.
,
32
(
4
), pp.
417
425
.
19.
Meyers
,
M. A.
, and
Chawla
,
K. K.
,
1999
,
Mechanical Behavior of Materials
,
Cambridge University Press
,
Cambridge, UK
.
20.
McCrum
,
N. G.
,
Buckley
,
C. P.
, and
Bucknall
,
C. B.
,
1997
,
Principles of Polymer Engineering
,
Oxford University Press
, New York.
21.
Toth
,
K.
,
Sohar
,
G.
,
Pallagi
,
E.
, and
Szabo-Revesz
,
P.
,
2007
, “
Further Characterization of Degenerated Human Cartilage With Differential Scanning Calorimetry
,”
Thermochim. Acta
,
464
(
1–2
), pp.
75
77
.
22.
Dovbeshko
,
G. I.
,
Gridina
,
N. Y.
,
Kruglova
,
E. B.
, and
Pashchuk
,
O. P.
,
1997
, “
FTIR Spectroscopy Studies of Nucleic Acid Damage
,”
Talanta
,
53
(
1–2
), pp.
233
246
.
23.
Wu
,
J. G.
,
Xu
,
Y. Z.
,
Sun
,
C. W.
,
Soloway
,
R. D.
,
Xu
,
D. F.
,
Wu
,
Q. G.
,
Sun
,
K. H.
,
Weng
,
S. F.
, and
Xu
,
G. X.
,
2001
, “
Distinguishing Malignant From Normal Oral Tissues Using FTIR Fiber-Optic Techniques
,”
Biospectroscopy
,
62
(
4
), pp.
185
192
.
24.
Chiriboga
,
L.
,
Xie
,
P.
,
Yee
,
H.
,
Vigorita
,
V.
,
Zarou
,
D.
,
Zakim
,
D.
, and
Diem
,
M.
,
1998
, “
Infrared Spectroscopy of Human Tissue. I. Differentiation and Maturation of Epithelial Cells in the Human Cervix
,”
Biospectroscopy
,
4
(
1
), pp.
47
53
.
25.
Barth
,
A.
,
2007
, “
Infrared Spectroscopy of Proteins
,”
Biochim. Biophys. Acta
,
1767
(
9
), pp.
1073
1101
.
26.
Oberg
,
K. A.
,
Ruysschaert
,
J. M.
, and
Goormaghtigh
,
E.
,
2004
, “
The Optimization of Protein Secondary Structure Determination With Infrared and Circular Dichroism Spectra
,”
Eur. J. Biochem.
,
271
(
14
), pp.
2937
2948
.
27.
Wood
,
B. R.
,
Quinn
,
M. A.
,
Burden
,
F. R.
, and
McNaughton
,
D.
,
1996
, “
An Investigation Into FTIR Spectroscopy as a Bio-Diagnostic Tool for Cervical Cancer
,”
Biospectroscopy
,
2
(
3
), pp.
143
153
.
28.
Taillandier
,
E.
, and
Liquier
,
J.
,
1992
, “
Infrared Spectroscopy of DNA
,”
Methods Enzymol.
,
211
, pp.
307
335
.
29.
Paluszkiewicz
,
C.
, and
Kwiatek
,
W. M.
,
2001
, “
Analysis of Human Cancer Prostate Tissues Using FTIR Microscopy and SXIXE Techniques
,”
J. Mol. Struct.
,
565
, pp.
329
334
.
30.
Shetty
,
G.
,
Kedall
,
C.
,
Shepherd
,
N.
,
Stone
,
N.
, and
Barr
,
H.
,
2006
, “
Raman Spectroscopy: Evaluation of Biochemical Changes in Carcinogenesis of Oesophagus
,”
Br. J. Cancer
,
94
(
10
), pp.
1460
1464
.
31.
Ogawa
,
T.
, and
Yamada
,
T.
,
1994
, “
A Numerical Predication of Peak Area in Loss Factor for Polymer
,”
J. Appl. Polym. Sci.
,
53
(
12
), pp.
1663
1668
.
32.
Cole
,
J. T.
,
Mitala
,
C. M.
,
Kundu
,
S.
,
Verma
,
A.
,
Elkind
,
J. A.
,
Nissim
,
I.
, and
Cohen
,
A. S.
,
2010
, “
Dietary Branched Chain Amino Acids Ameliorate Injury-Induced Cognitive Impairment
,”
Proc. Natl. Acad. Sci. U.S.A.
,
107
(
1
), pp.
366
371
.
33.
Ogden
,
R. W.
,
1997
,
Non-Linear Elastic Deformations
,
Courier Corp.
, North Chelmsford, MA.
34.
Rashid
,
B.
,
Destrade
,
M.
, and
Gilchrist
,
M. D.
,
2014
, “
Mechanical Characterization of Brain Tissue in Tension at Dynamic Strain Rates
,”
J. Mech. Behav. Biomed. Mater.
,
33
, pp.
43
54
.
35.
Rashid
,
B.
,
Destrade
,
M.
, and
Gilchrist
,
M. D.
,
2012
, “
Mechanical Characterization of Brain Tissue in Compression at Dynamic Strain Rates
,”
J. Mech. Behav. Biomed. Mater.
,
10
, pp.
23
38
.
36.
Fung
,
Y. C.
,
1967
, “
Elasticity of Soft Tissues in Simple Elongation
,”
Am. J. Physiol.
,
213
(6), pp.
1532
1544
.
37.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. London A
,
326
(
1567
), pp.
565
584
.
38.
Gent
,
A. N.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
.
39.
Fung
,
Y. C.
,
Perrone
,
N.
, and
Anliker
,
M.
,
1972
, “
Biomechanics, Its Foundations and Objectives
,”
Symposium on Biomechanics, Its Foundations and Objectives
, San Diego, CA, July 29–31,
Prentice-Hall
, Upper Saddle River,
NJ
, pp. 181–208.
40.
Pinto
,
J. G.
, and
Fung
,
Y. C.
,
1973
, “
Mechanical Properties of the Heart Muscle in the Passive State
,”
J. Biomech.
,
6
(
6
), pp.
597
616
.
41.
Karimi
,
A.
,
Navidbakhsh
,
M.
,
Beigzadeh
,
B.
, and
Faghihi
,
S.
,
2013
, “
Hyperelastic Mechanical Behavior of Rat Brain Infected by Plasmodium berghei ANKA—Experimental Testing and Constitutive Modeling
,”
Int. J. Damage Mech.
,
23
(
7
), pp.
857
871
.
You do not currently have access to this content.