Covalent adaptable network (CAN) polymers can rearrange their macromolecular network by bond exchange reactions (BERs), where an active unit attaches to and then replaces a unit in an existing bond and forms a new bond. When such macromolecular events occur on the interface, they can contribute to surface welding, self-healing, and recycling of thermosetting polymers. In this paper, we study the interfacial welding and failure of CANs involving both interfacial normal and shear stresses. To do this, we incorporate our recently developed multiscale model for surface welding of CANs with a cohesive zone modeling approach in finite-element method (FEM) simulation. The developed FEM paradigm involves a multiscale model predicting the interfacial chain density and fracture energy, which are transferred to a cohesive zone model to establish the surface traction-separation law. The simulations show good agreement with experimental results on the modulus and strength of welded samples. They also provide understanding of the interactions between surface welding and material malleability in determining the final mechanical properties of polymer structures. The developed FEM model can be applied to study other complex welding problems, such as polymer reprocessing with nonregular particle size and shape.

References

References
1.
Billmeyer
,
F. W.
,
1984
,
Textbook of Polymer Science
,
3rd ed.
,
Wiley
,
New York
.
2.
Ferry
,
J. D.
,
1980
,
Viscoelastic Properties of Polymers
,
Wiley
,
New York
.
3.
Pickering
,
S. J.
,
2006
, “
Recycling Technologies for Thermoset Composite Materials—Current Status
,”
Composites, Part A
,
37
(
8
), pp.
1206
1215
.
4.
Scott
,
T.
,
Schneider
,
A.
,
Cook
,
W.
, and
Bowman
,
C.
,
2005
, “
Photoinduced Plasticity in Cross-Linked Polymers
,”
Science
,
308
(
5728
), pp.
1615
1617
.
5.
Amamoto
,
Y.
,
Kamada
,
J.
,
Otsuka
,
H.
,
Takahara
,
A.
, and
Matyjaszewski
,
K.
,
2011
, “
Repeatable Photoinduced Self-Healing of Covalently Cross-Linked Polymers Through Reshuffling of Trithiocarbonate Units
,”
Angew. Chem.
,
123
(
7
), pp.
1698
1701
.
6.
Canadell
,
J.
,
Goossens
,
H.
, and
Klumperman
,
B.
,
2011
, “
Self-Healing Materials Based on Disulfide Links
,”
Macromolecules
,
44
(
8
), pp.
2536
2541
.
7.
Capelot
,
M.
,
Montarnal
,
D.
,
Tournilhac
,
F.
, and
Leibler
,
L.
,
2012
, “
Metal-Catalyzed Transesterification for Healing and Assembling of Thermosets
,”
J. Am. Chem. Soc.
,
134
(
18
), pp.
7664
7667
.
8.
Deng
,
G. H.
,
Tang
,
C. M.
,
Li
,
F. Y.
,
Jiang
,
H. F.
, and
Chen
,
Y. M.
,
2010
, “
Covalent Cross-Linked Polymer Gels With Reversible Sol-Gel Transition and Self-Healing Properties
,”
Macromolecules
,
43
(
3
), pp.
1191
1194
.
9.
Zhang
,
Y.
,
Broekhuis
,
A. A.
, and
Picchioni
,
F.
,
2009
, “
Thermally Self-Healing Polymeric Materials: The Next Step to Recycling Thermoset Polymers?
,”
Macromolecules
,
42
(
6
), pp.
1906
1912
.
10.
Leibler
,
L.
,
Rubinstein
,
M.
, and
Colby
,
R. H.
,
1991
, “
Dynamics of Reversible Networks
,”
Macromolecules
,
24
(
16
), pp.
4701
4707
.
11.
Stukalin
,
E. B.
,
Cai
,
L. H.
,
Kumar
,
N. A.
,
Leibler
,
L.
, and
Rubinstein
,
M.
,
2013
, “
Self-Healing of Unentangled Polymer Networks With Reversible Bonds
,”
Macromolecules
,
46
(
18
), pp.
7525
7541
.
12.
Smallenburg
,
F.
,
Leibler
,
L.
, and
Sciortino
,
F.
,
2013
, “
Patchy Particle Model for Vitrimers
,”
Phys. Rev. Lett.
,
111
(
18
), p.
188002
.
13.
Ma
,
J.
,
Mu
,
X. M.
,
Bowman
,
C. N.
,
Sun
,
Y. Y.
,
Dunn
,
M. L.
,
Qi
,
H. J.
, and
Fang
,
D. N.
,
2014
, “
A Photoviscoplastic Model for Photoactivated Covalent Adaptive Networks
,”
J. Mech. Phys. Solids
,
70
, pp.
84
103
.
14.
Long
,
R.
,
Qi
,
H. J.
, and
Dunn
,
M. L.
,
2013
, “
Modeling the Mechanics of Covalently-Adaptable Polymer Networks With Temperature-Dependent Bond Exchange Reactions
,”
Soft Matter
,
9
(
15
), pp.
4083
4096
.
15.
Yang
,
H.
,
Yu
,
K.
,
Mu
,
X. M.
,
Shi
,
X. H.
,
Wei
,
Y. J.
,
Guo
,
Y. F.
, and
Qi
,
H. J.
,
2015
, “
A Molecular Dynamics Study of Bond Exchange Reactions in Covalent Adaptable Networks
,”
Soft Matter
,
11
(
31
), pp.
6305
6317
.
16.
Stukalin
,
E. B.
,
Cai
,
L.-H.
,
Kumar
,
N. A.
,
Leibler
,
L.
, and
Rubinstein
,
M.
,
2013
, “
Self-Healing of Unentangled Polymer Networks With Reversible Bonds
,”
Macromolecules
,
46
(
18
), pp.
7525
7541
.
17.
Yang
,
H.
,
Yu
,
K.
,
Wei
,
Y.
,
Guo
,
Y.
, and
Qi
,
H. J.
,
2016
, “
Molecular Dynamics Studying on Welding Behavior in Thermoset Polymers Due to Bond Exchange Reactions
,”
RSC Adv.
,
6
(
27
), pp.
22476
22487
.
18.
Yu
,
K.
,
Shi
,
Q.
,
Li
,
H.
,
Jabour
,
J.
,
Yang
,
H.
,
Dunn
,
M. L.
,
Wang
,
T.
, and
Qi
,
H. J.
,
2016
, “
Interfacial Welding of Dynamic Covalent Network Polymers
,”
J. Mech. Phys. Solids
,
94
, pp.
1
17
.
19.
Yu
,
K.
,
Taynton
,
P.
,
Zhang
,
W.
,
Dunn
,
M. L.
, and
Qi
,
H. J.
,
2014
, “
Reprocessing and Recycling of Thermosetting Polymers Based on Bond Exchange Reactions
,”
RSC Adv.
,
4
(
20
), pp.
10108
10117
.
20.
Mei
,
H. X.
,
Gowrishankar
,
S.
,
Liechti
,
K. M.
, and
Huang
,
R.
,
2010
, “
Initiation and Propagation of Interfacial Delamination in Integrated Thin-Film Structures
,” 12th
IEEE
Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
, Las Vegas, NV, June 2–5, pp.
1
8
.
21.
Hertzberg
,
R. W.
,
1983
,
Deformation and Fracture Mechanics of Engineering Materials
, 2nd ed.,
Wiley
,
New York
.
22.
Ungsuwarungsri
,
T.
, and
Knauss
,
W. G.
,
1987
, “
The Role of Damage-Softened Material Behavior in the Fracture of Composites and Adhesives
,”
Int. J. Fract.
,
35
(
3
), pp.
221
241
.
23.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1992
, “
The Relation Between Crack-Growth Resistance and Fracture Process Parameters in Elastic Plastic Solids
,”
J. Mech. Phys. Solids
,
40
(
6
), pp.
1377
1397
.
24.
Schellekens
,
J. C. J.
, and
Deborst
,
R.
,
1993
, “
On the Numerical-Integration of Interface Elements
,”
Int. J. Numer. Methods Eng.
,
36
(
1
), pp.
43
66
.
25.
Reedy
,
E. D.
,
Mello
,
F. J.
, and
Guess
,
T. R.
,
1997
, “
Modeling the Initiation and Growth of Delaminations in Composite Structures
,”
J. Compos. Mater.
,
31
(
8
), pp.
812
831
.
26.
Pietruszczak
,
S.
, and
Mroz
,
Z.
,
1981
, “
Finite-Element Analysis of Deformation of Strain-Softening Materials
,”
Int. J. Numer. Methods Eng.
,
17
(
3
), pp.
327
334
.
27.
Camacho
,
G. T.
, and
Ortiz
,
M.
,
1996
, “
Computational Modelling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
,
33
(
20–22
), pp.
2899
2938
.
28.
Montarnal
,
D.
,
Capelot
,
M.
,
Tournilhac
,
F.
, and
Leibler
,
L.
,
2011
, “
Silica-Like Malleable Materials From Permanent Organic Networks
,”
Science
,
334
(
6058
), pp.
965
968
.
29.
Yu
,
K.
,
Taynton
,
P.
,
Zhang
,
W.
,
Dunn
,
M. L.
, and
Qi
,
H. J.
,
2014
, “
Influence of Stoichiometry on the Glass Transition and Bond Exchange Reactions in Epoxy Thermoset Polymers
,”
RSC Adv.
,
4
(
89
), pp.
48682
48690
.
30.
Persson
,
B. N. J.
,
2002
, “
Adhesion Between an Elastic Body and a Randomly Rough Hard Surface
,”
Eur. Phys. J. E
,
8
(
4
), pp.
385
401
.
31.
Persson
,
B. N. J.
,
Albohr
,
O.
,
Creton
,
C.
, and
Peveri
,
V.
,
2004
, “
Contact Area Between a Viscoelastic Solid and a Hard, Randomly Rough, Substrate
,”
J. Chem. Phys.
,
120
(
18
), pp.
8779
8793
.
32.
Needleman
,
A.
,
1987
, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
ASME J. Appl. Mech.
,
54
(
3
), pp.
525
531
.
33.
Needleman
,
A.
,
1990
, “
An Analysis of Tensile Decohesion Along an Interface
,”
J. Mech. Phys. Solids
,
38
(
3
), pp.
289
324
.
34.
Hillerborg
,
A.
,
Modeer
,
M.
, and
Petersson
,
P. E.
,
1976
, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cem. Concr. Res.
,
6
(
6
), pp.
773
782
.
35.
Ouyang
,
Z. Y.
, and
Li
,
G. Q.
,
2009
, “
Local Damage Evolution of Double Cantilever Beam Specimens During Crack Initiation Process: A Natural Boundary Condition Based Method
,”
ASME J. Appl. Mech.
,
76
(
5
), p.
051003
.
36.
Ouyang
,
Z. Y.
, and
Li
,
G. Q.
,
2009
, “
Nonlinear Interface Shear Fracture of End Notched Flexure Specimens
,”
Int. J. Solids Struct.
,
46
(
13
), pp.
2659
2668
.
37.
Ji
,
G. F.
,
Ouyang
,
Z. Y.
, and
Li
,
G. Q.
,
2012
, “
On the Interfacial Constitutive Laws of Mixed Mode Fracture With Various Adhesive Thicknesses
,”
Mech. Mater.
,
47
, pp.
24
32
.
38.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.
39.
Xu
,
X. P.
, and
Needleman
,
A.
,
1994
, “
Numerical Simulations of Fast Crack-Growth in Brittle Solids
,”
J. Mech. Phys. Solids
,
42
(
9
), pp.
1397
1434
.
40.
Barenblatt
,
G. I.
,
1959
, “
The Formation of Equilibrium Cracks During Brittle Fracture. General Ideas and Hypothesis. Axisymmetrical Cracks
,”
J. Appl. Math. Mech.
,
23
(3), pp.
622
636
.
41.
Mi
,
Y.
,
Crisfield
,
M. A.
,
Davies
,
G. A. O.
, and
Hellweg
,
H. B.
,
1998
, “
Progressive Delamination Using Interface Elements
,”
J. Compos. Mater.
,
32
(
14
), pp.
1246
1272
.
42.
Aoki
,
Y.
, and
Suemasu
,
H.
,
2003
, “
Damage Analysis in Composite Laminates by Using an Interface Element
,”
Adv. Compos. Mater.
,
12
(
1
), pp.
13
21
.
43.
Alfano
,
G.
, and
Crisfield
,
M. A.
,
2001
, “
Finite Element Interface Models for the Delamination Analysis of Laminated Composites: Mechanical and Computational Issues
,”
Int. J. Numer. Methods Eng.
,
50
(
7
), pp.
1701
1736
.
44.
Camanho
,
P. P.
,
Davila
,
C. G.
, and
de Moura
,
M. F.
,
2003
, “
Numerical Simulation of Mixed-Mode Progressive Crack in Composite Materials
,”
J. Compos. Mater.
,
37
(
16
), pp.
1415
1418
.
45.
Xie
,
D.
, and
Waas
,
A. M.
,
2006
, “
Discrete Cohesive Zone Model for Mixed-Mode Fracture Using Finite Element Analysis
,”
Eng. Fract. Mech.
,
73
(
13
), pp.
1783
1796
.
46.
Turon
,
A.
,
Davika
,
C. G.
,
Camanho
,
P. P.
, and
Costa
,
J.
,
2005
, “
An Engineering Solution for Using Coarse Meshes in the Simulation of Delamination With Cohesive Zone Model
,” NASA Langley Research Center; Hampton, VA, Report No.
NASA
/TM-2005-213547.
47.
Song
,
S. J.
, and
Waas
,
A. M.
,
1995
, “
Energy-Based Mechanical Model for Mixed-Mode Failure of Laminated Composites
,”
AIAA J.
,
33
(
4
), pp.
739
745
.
48.
Song
,
S. J.
, and
Waas
,
A. M.
,
1994
, “
Mode-I Failure of Laminated Polymeric Composites
,”
Eng. Fract. Mech.
,
49
(
1
), pp.
17
27
.
49.
Song
,
S. J.
, and
Waas
,
A. M.
,
1994
, “
A Spring Foundation Model for Mode-I Failure of Laminated Composites Based on an Energy Criterion
,”
ASME J. Eng. Mater. Technol.
,
116
(
4
), pp.
512
516
.
50.
Shahwan
,
K. W.
, and
Waas
,
A. M.
,
1997
, “
Non-Self-Similar Decohesion Along a Finite Interface of Unilaterally Constrained Delaminations
,”
Proc. R. Soc. A
,
453
(
1958
), pp.
515
550
.
You do not currently have access to this content.