The vibrations of gyroscopic continua may induce complex mode functions. The continuous model governed by partial differential equations (PDEs) as well as the discretized model governed by ordinary differential equations (ODEs) are used in the dynamical study of the gyroscopic continua. The invariant manifold method is employed to derive the complex mode functions of the discretized models, which are compared to the mode functions derived from the continuous model. It is found that the complex mode functions constituted by trial functions of the discretized system yield good agreement with that derived by the continuous system. On the other hand, the modal analysis of discretized system demonstrates the phase difference among the general coordinates presented by trial functions, which reveals the physical explanation of the complex modes.

References

References
1.
Wickert
,
J. A.
,
1996
, “
Transient Vibration of Gyroscopic Systems With Unsteady Superposed Motion
,”
J. Sound Vib.
,
195
(
5
), pp.
797
807
.
2.
Marynowski
,
K.
, and
Kapitaniak
,
T.
,
2014
, “
Dynamics of Axially Moving Continua
,”
Int. J. Mech. Sci.
,
81
(4), pp.
26
41
.
3.
Banerjee
,
J. R.
, and
Kennedy
,
D.
,
2014
, “
Dynamic Stiffness Method for Inplane Free Vibration of Rotating Beams Including Coriolis Effects
,”
J. Sound Vib.
,
333
(
26
), pp.
7299
7312
.
4.
Banerjee
,
J. R.
,
Papkov
,
S. O.
,
Liu
,
X.
, and
Kennedy
,
D.
,
2015
, “
Dynamic Stiffness Matrix of a Rectangular Plate for the General Case
,”
J. Sound Vib.
,
342
, pp.
177
199
.
5.
Rao
,
J. S.
,
2011
,
History of Rotating Machinery Dynamics
,
Springer
,
Dordrecht, The Netherlands
.
6.
Païdoussis
,
M. P.
,
1998
,
Fluid-Structure Interactions: Slender Structures and Axial Flow
, Vol. 1,
Elsevier Academic Press
,
London
.
7.
Ibrahim
,
R. A.
,
2010
, “
Overview of Mechanics of Pipes Conveying Fluids—Part I: Fundamental Studies
,”
ASME J. Pressure Vessel Technol.
,
132
(
3
), p.
034001
.
8.
Yu
,
D. L.
,
Paidoussis
,
M. P.
,
Shen
,
H. J.
, and
Wang
,
L.
,
2014
, “
Dynamic Stability of Periodic Pipes Conveying Fluid
,”
ASME J. Appl. Mech.
,
81
(
1
), p. 011008.
9.
Wickert
,
J. A.
, and
Mote
,
C. D.
,
1990
, “
Classical Vibration Analysis of Axially Moving Continua
,”
ASME J. Appl. Mech.
,
57
(
3
), pp.
738
744
.
10.
Chen
,
L. Q.
, and
Yang
,
X. D.
,
2005
, “
Steady-State Response of Axially Moving Viscoelastic Beams With Pulsating Speed: Comparison of Two Nonlinear Models
,”
Int. J. Solids Struct.
,
42
(
1
), pp.
37
50
.
11.
Chen
,
L.-Q.
,
Zhang
,
Y.-L.
,
Zhang
,
G.-C.
, and
Ding
,
H.
,
2014
, “
Evolution of the Double-Jumping in Pipes Conveying Fluid Flowing at the Supercritical Speed
,”
Int. J. Non-Linear Mech.
,
58
, pp.
11
21
.
12.
Paidoussis
,
M. P.
, and
Li
,
G. X.
,
1993
, “
Pipes Conveying Fluid: A Model Dynamical Problem
,”
J. Fluids Struct.
,
7
(
7
), pp.
823
823
.
13.
Hosseini
,
S. A. A.
, and
Khadem
,
S. E.
,
2009
, “
Free Vibrations Analysis of a Rotating Shaft With Nonlinearities in Curvature and Inertia
,”
Mech. Mach. Theory
,
44
(
1
), pp.
272
288
.
14.
Lin
,
S. C.
, and
Hsiao
,
K. M.
,
2001
, “
Vibration Analysis of a Rotating Timoshenko Beam
,”
J. Sound Vib.
,
240
(
2
), pp.
303
322
.
15.
Wickert
,
J. A.
, and
Mote
,
C. D.
,
1991
, “
Traveling Load Response of an Axially Moving String
,”
J. Sound Vib.
,
149
(
2
), pp.
267
284
.
16.
Chen
,
L. Q.
,
2005
, “
Analysis and Control of Transverse Vibrations of Axially Moving Strings
,”
Appl. Mech. Rev.
,
58
(
2
), pp.
91
116
.
17.
Ding
,
H.
, and
Chen
,
L. Q.
,
2011
, “
Natural Frequencies of Nonlinear Vibration of Axially Moving Beams
,”
Nonlinear Dyn.
,
63
(
1–2
), pp.
125
134
.
18.
Ghayesh
,
M. H.
,
Kafiabad
,
H. A.
, and
Reid
,
T.
,
2012
, “
Sub- and Super-Critical Nonlinear Dynamics of a Harmonically Excited Axially Moving Beam
,”
Int. J. Solids Struct.
,
49
(
1
), pp.
227
243
.
19.
Meirovitch
,
L.
,
1974
, “
A New Method of Solution of the Eigenvalue Problem for Gyroscopic Systems
,”
AIAA J.
,
12
(
10
), pp.
1337
1342
.
20.
Meirovitch
,
L.
,
1975
, “
A Modal Analysis for the Response of Linear Gyroscopic Systems
,”
ASME J. Appl. Mech.
,
42
(
2
), pp.
446
450
.
21.
Ulsoy
,
A. G.
,
Mote
,
C. D.
, and
Szymani
,
R.
,
1978
, “
Principal Developments in Band Saw Vibration and Stability Research
,”
Holz Roh Werkst.
,
36
(
7
), pp.
273
280
.
22.
Perkins
,
N. C.
,
1990
, “
Linear Dynamics of a Translating String on an Elastic-Foundation
,”
ASME J. Vib. Acoust.
,
112
(
1
), pp.
2
7
.
23.
Chen
,
L. Q.
, and
Zu
,
J. W.
,
2008
, “
Solvability Condition in Multi-Scale Analysis of Gyroscopic Continua
,”
J. Sound Vib.
,
309
(
1–2
), pp.
338
342
.
24.
Chen
,
L. Q.
,
Tang
,
Y. Q.
, and
Lim
,
C. W.
,
2010
, “
Dynamic Stability in Parametric Resonance of Axially Accelerating Viscoelastic Timoshenko Beams
,”
J. Sound Vib.
,
329
(
5
), pp.
547
565
.
25.
Ding
,
H.
, and
Chen
,
L. Q.
,
2010
, “
Galerkin Methods for Natural Frequencies of High-Speed Axially Moving Beams
,”
J. Sound Vib.
,
329
(
17
), pp.
3484
3494
.
26.
Malookani
,
R. A.
, and
van Horssen
,
W. T.
,
2015
, “
On Resonances and the Applicability of Galerkin's Truncation Method for an Axially Moving String With Time-Varying Velocity
,”
J. Sound Vib.
,
344
, pp.
1
17
.
27.
Ozhan
,
B. B.
,
2014
, “
Vibration and Stability Analysis of Axially Moving Beams With Variable Speed and Axial Force
,”
Int. J. Struct. Stab. Dyn.
,
14
(
6
), p. 1450015.
28.
Öz
,
H. R.
,
Pakdemirli
,
M.
, and
Boyacı
,
H.
,
2001
, “
Non-Linear Vibrations and Stability of an Axially Moving Beam With Time-Dependent Velocity
,”
Int. J. Non-Linear Mech.
,
36
(
1
), pp.
107
115
.
29.
Thomsen
,
J. J.
, and
Dahl
,
J.
,
2010
, “
Analytical Predictions for Vibration Phase Shifts Along Fluid-Conveying Pipes Due to Coriolis Forces and Imperfections
,”
J. Sound Vib.
,
329
(
15
), pp.
3065
3081
.
30.
Čepon
,
G.
, and
Boltežar
,
M.
,
2007
, “
Computing the Dynamic Response of an Axially Moving Continuum
,”
J. Sound Vib.
,
300
(
1–2
), pp.
316
329
.
31.
Ding
,
H.
, and
Chen
,
L. Q.
,
2011
, “
Approximate and Numerical Analysis of Nonlinear Forced Vibration of Axially Moving Viscoelastic Beams
,”
Acta Mech. Sin.
,
27
(
3
), pp.
426
437
.
32.
Yang
,
X. D.
,
Chen
,
L. Q.
, and
Zu
,
J. W.
,
2011
, “
Vibrations and Stability of an Axially Moving Rectangular Composite Plate
,”
ASME J. Appl. Mech.
,
78
(
1
), p.
011018
.
33.
Ding
,
H.
,
Chen
,
L.-Q.
, and
Yang
,
S.-P.
,
2012
, “
Convergence of Galerkin Truncation for Dynamic Response of Finite Beams on Nonlinear Foundations Under a Moving Load
,”
J. Sound Vib.
,
331
(
10
), pp.
2426
2442
.
34.
Bishop
,
R. E. D.
, and
Johnson
,
D. C.
,
1979
,
The Mechanics of Vibration
,
Cambridge University Press
,
Cambridge, UK
.
35.
Lang
,
G. F.
,
2012
, “
Matrix Madness and Complex Confusion. A Review of Complex Modes From Multiple Viewpoints
,”
Sound Vib.
,
46
(
11
), pp.
8
12
.
36.
Brake
,
M. R.
, and
Wickert
,
J. A.
,
2010
, “
Modal Analysis of a Continuous Gyroscopic Second-Order System With Nonlinear Constraints
,”
J. Sound Vib.
,
329
(
7
), pp.
893
911
.
37.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J. C.
, and
Vakakis
,
A. F.
,
2009
, “
Nonlinear Normal Modes, Part I: A Useful Framework for the Structural Dynamicist
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
170
194
.
38.
Peeters
,
M.
,
Viguié
,
R.
,
Sérandour
,
G.
,
Kerschen
,
G.
, and
Golinval
,
J. C.
,
2009
, “
Nonlinear Normal Modes, Part II: Toward a Practical Computation Using Numerical Continuation Techniques
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
195
216
.
39.
Neild
,
S. A.
,
Champneys
,
A. R.
,
Wagg
,
D. J.
,
Hill
,
T. L.
, and
Cammarano
,
A.
,
2015
, “
The Use of Normal Forms for Analysing Nonlinear Mechanical Vibrations
,”
Philos. Trans. R. Soc. London, Ser. A
,
373
(
2051
), p.
20140404
.
40.
Hill
,
T. L.
,
Cammarano
,
A.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2015
, “
Out-of-Unison Resonance in Weakly Nonlinear Coupled Oscillators
,”
Proc. Math. Phys. Eng. Sci./R. Soc.
,
471
(
2173
), p.
20140659
.
41.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1993
, “
Normal-Modes for Nonlinear Vibratory-Systems
,”
J. Sound Vib.
,
164
(
1
), pp.
85
124
.
42.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1994
, “
Normal-Modes of Vibration for Nonlinear Continuous Systems
,”
J. Sound Vib.
,
169
(
3
), pp.
319
347
.
43.
Ghayesh
,
M. H.
,
2012
, “
Coupled Longitudinal–Transverse Dynamics of an Axially Accelerating Beam
,”
J. Sound Vib.
,
331
(
23
), pp.
5107
5124
.
44.
Orloske
,
K.
,
Leamy
,
M. J.
, and
Parker
,
R. G.
,
2006
, “
Flexural–Torsional Buckling of Misaligned Axially Moving Beams. I. Three-Dimensional Modeling, Equilibria, and Bifurcations
,”
Int. J. Solids Struct.
,
43
(
14–15
), pp.
4297
4322
.
45.
Chen
,
L. Q.
, and
Yang
,
X. D.
,
2005
, “
Stability in Parametric Resonance of Axially Moving Viscoelastic Beams With Time-Dependent Speed
,”
J. Sound Vib.
,
284
(
3–5
), pp.
879
891
.
46.
Öz
,
H. R.
, and
Pakdemirli
,
M.
,
1999
, “
Vibrations of an Axially Moving Beam With Time-Dependent Velocity
,”
J. Sound Vib.
,
227
(
2
), pp.
239
257
.
47.
Shahgholi
,
M.
,
Khadem
,
S. E.
, and
Bab
,
S.
,
2014
, “
Free Vibration Analysis of a Nonlinear Slender Rotating Shaft With Simply Support Conditions
,”
Mech. Mach. Theory
,
82
, pp.
128
140
.
You do not currently have access to this content.