Hypervelocity impact (HVI) is a scenario involving an impacting velocity in excess of 1 km/s. Ubiquitous in outer space, paradigms of HVI are typified by the collision between orbital debris and spacecraft. HVI features transient, localized, and extreme material deformation under which the induced acoustic emission (AE) signals present unique yet complex features. A dedicated modeling and numerical simulation approach, based on the three-dimensional smooth-particle hydrodynamics (SPH), was developed to gain an insight into characteristics of HVI-induced AE propagation. With the approach, both normal and oblique HVI scenarios were interrogated, and material failure in both cases was predicted. The coincidence in results between simulation and HVI experiment, as observed at a qualitative degree, has demonstrated the effectiveness of the modeling. Signal analysis shows that the shock wave converts to Lamb wave quickly as propagation from HVI spot, with the zeroth-order symmetric wave mode (S0) (i.e., the first-arrival wave) dominating wave signal energy. S0 is observed dispersive in a wide frequency range with majority of it below 1 MHz. In comparison, the antisymmetric wave mode distributes in a range below 200 kHz with a peak value at 30 kHz. S0 was employed to pinpoint the location of HVI, using an enhanced delay-and-sum-based diagnostic imaging algorithm, which was validated by locating orbital debris-induced orifice in space structures, showing precise identification results.

References

References
1.
Mihaly
,
J. M.
,
Tandy
,
J. D.
,
Rosakis
,
A. J.
,
Adams
,
M. A.
, and
Pullin
,
D.
,
2014
, “
Pressure-Dependent, Infrared-Emitting Phenomenon in Hypervelocity Impact
,”
ASME J. Appl. Mech.
,
82
(
1
), p.
011004
.
2.
Li
,
Y. Q.
,
Li
,
X. G.
, and
Gao
,
X. L.
,
2015
, “
Modeling of Advanced Combat Helmet Under Ballistic Impact
,”
ASME J. Appl. Mech.
,
82
(
11
), p.
111004
.
3.
Murr
,
L. E.
,
Quinones
,
S. A.
,
Ferreyra
,
T. E.
,
Ayala
,
A.
,
Valerio
,
O. L.
,
Hörz
,
F.
, and
Bernhard
,
R. P.
,
1998
, “
The Low-Velocity-to-Hypervelocity Penetration Transition for Impact Craters in Metal Targets
,”
Mater. Sci. Eng. A
,
256
(
1–2
), pp.
166
182
.
4.
Ramjaun
,
D.
,
Kato
,
I.
,
Takayama
,
K.
, and
Jagadeesh
,
G.
,
2003
, “
Hypervelocity Impacts on Thin Metallic and Composite Space Debris Bumper Shields
,”
AIAA J.
,
41
(
8
), pp.
1564
1572
.
5.
Razzaqi
,
S. A.
, and
Smart
,
M. K.
,
2011
, “
Hypervelocity Experiments on Oxygen Enrichment in a Hydrogen-Fueled Scramjet
,”
AIAA J.
,
49
(
7
), pp.
1488
1497
.
6.
Murr
,
L. E.
,
Quinones
,
S. A.
,
Ferreyra
,
T. E.
,
Ayala
,
A.
,
Valerio
,
O. L.
,
Hörz
,
F.
, and
Bernhard
,
R. P.
,
1998
, “
The Low-Velocity-to-Hypervelocity Penetration Transition for Impact Craters in Metal Targets
,”
Mater. Sci. Eng., A
,
256
(
1–2
), pp.
166
182
.
7.
IADC
,
2013
, “
Sensor Systems to Detect Impacts on Spacecraft
,” Version 2.1.
8.
Wright
,
D.
,
2007
, “
Space Debris
,”
Physics Today
,
60
(
10
), pp.
35
40
.
9.
Christiansen
,
E. L.
,
1993
, “
Design and Performance Equations for Advanced Meteoroid and Debris Shields
,”
Int. J. Impact Eng.
,
14
(
1
), pp.
145
156
.
10.
Cour-Palais
,
B. G.
, and
Crews
,
J. L.
,
1990
, “
A Multi-Shock Concept for Spacecraft Shielding
,”
Int. J. Impact Eng.
,
10
(
1
), pp.
135
146
.
11.
Drolshagen
,
G.
,
2008
, “
Impact Effects From Small Size Meteoroids and Space Debris
,”
Adv. Space Res.
,
41
(
7
), pp.
1123
1131
.
12.
Kundu
,
T.
,
Das
,
S.
,
Martin
,
S. A.
, and
Jata
,
K. V.
,
2008
, “
Locating Point of Impact in Anisotropic Fiber Reinforced Composite Plates
,”
Ultrasonics
,
48
(
3
), pp.
193
201
.
13.
Coverley
,
P. T.
, and
Staszewski
,
W. J.
,
2003
, “
Impact Damage Location in Composite Structures Using Optimized Sensor Triangulation Procedure
,”
Smart Mater. Struct.
,
12
(
5
), pp.
795
803
.
14.
He
,
T.
,
Pan
,
Q.
,
Liu
,
Y. G.
,
Liu
,
X. D.
, and
Hu
,
D. Y.
,
2012
, “
Near-Field Beamforming Analysis for Acoustic Emission Source Localization
,”
Ultrasonics
,
52
(
5
), pp.
587
592
.
15.
Giurgiutiu
,
V.
, and
Bao
,
J.
,
2004
, “
Embedded-Ultrasonics Structural Radar for In Situ Structural Health Monitoring of Thin-Wall Structures
,”
Struct. Health Monit.
,
3
(
2
), pp.
121
140
.
16.
Raghavan
,
A.
, and
Cesnik
,
C. E.
,
2007
, “
Review of Guided-Wave Structural Health Monitoring
,”
Shock Vib. Dig.
,
39
(
2
), pp.
91
116
.
17.
Prosser
,
W. H.
,
Gorman
,
M. R.
, and
Humes
,
D. H.
,
1999
, “
Acoustic Emission Signals in Thin Plates Produced by Impact Damage
,”
J. Acoust. Emiss.
,
17
, pp.
29
36
.
18.
Perkins
,
S.
,
2010
, “
Hypervelocity Impact Detection: An Investigation Into Piezoelectric Response of PVDF Films
,”
Master's thesis
, School of Physical Sciences, University of Kent, UK.
19.
Schäfer
,
F.
, and
Janovsky
,
R.
,
2007
, “
Impact Sensor Network for Detection of Hypervelocity Impacts on Spacecraft
,”
Acta Astronaut.
,
61
(
10
), pp.
901
911
.
20.
Benson
,
D. J.
,
1992
, “
Computational Methods in Lagrangian and Eulerian Hydrocodes
,”
Comput. Methods Appl. Mech. Eng.
,
99
(
2
), pp.
235
394
.
21.
Ganzenmüller
,
G. C.
,
Hiermaier
,
S.
, and
May
,
M.
,
2015
, “
On the Similarity of Meshless Discretizations of Peridynamics and Smooth-Particle Hydrodynamics
,”
Comput. Struct.
,
150
(0), pp.
71
78
.
22.
Cherniaev
,
A.
, and
Telichev
,
I.
,
2015
, “
Meso-Scale Modeling of Hypervelocity Impact Damage in Composite Laminates
,”
Composites, Part B
,
74
(0), pp.
95
103
.
23.
Mahmadi
,
K.
, and
Aquelet
,
N.
,
2014
, “
Euler–Lagrange Simulation of High Pressure Shock Waves
,”
Wave Motion
,
54
, pp.
28
42
.
24.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics-Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron. Soc.
,
181
(
3
), pp.
375
389
.
25.
Ryan
,
S.
,
Schäfer
,
F.
,
Guyot
,
M.
,
Hiermaier
,
S.
, and
Lambert
,
M.
,
2008
, “
Characterizing the Transient Response of CFRP/Al HC Spacecraft Structures Induced by Space Debris Impact at Hypervelocity
,”
Int. J. Impact Eng.
,
35
(
12
), pp.
1756
1763
.
26.
Clegg
,
R.
,
White
,
D.
,
Riedel
,
W.
, and
Harwick
,
W.
,
2006
, “
Hypervelocity Impact Damage Prediction in Composites: Part I—Material Model and Characterisation
,”
Int. J. Impact Eng.
,
33
(
1
), pp.
190
200
.
27.
Zhang
,
Q. M.
,
Long
,
R. R.
,
Huang
,
F. L.
,
Chen
,
L.
, and
Fu
,
Y. S.
,
2008
, “
A Model for Debris Clouds Produced by Impact of Hypervelocity Projectiles on Multiplate Structures
,”
Appl. Phys. Lett.
,
93
(
21
), p.
211905
.
28.
Liu
,
M. B.
, and
Liu
,
G. R.
,
2010
, “
Smoothed Particle Hydrodynamics (SPH): An Overview and Recent Developments
,”
Arch. Comput. Methods Eng.
,
17
(
1
), pp.
25
76
.
29.
Anderson
,
J. D.
, and
Wendt
,
J.
,
1995
,
Computational Fluid Dynamics
,
Springer
,
Berlin
, Germany.
30.
Birdsall
,
C. K.
, and
Langdon
,
A. B.
,
2004
,
Plasma Physics Via Computer Simulation
,
CRC Press
,
Boca Raton, FL
.
31.
Libersky
,
L. D.
,
Petschek
,
A. G.
,
Carney
,
T. C.
,
Hipp
,
J. R.
, and
Allahdadi
,
F. A.
,
1993
, “
High Strain Lagrangian Hydrodynamics: A Three-Dimensional SPH Code for Dynamic Material Response
,”
J. Comput. Phys.
,
109
(
1
), pp.
67
75
.
32.
Ahrens
,
T.
,
1993
, “
Equation of State
,”
High-Pressure Shock Compression of Solids
,
Springer
, New York, pp.
75
113
.
33.
Steinberg
,
D.
,
Cochran
,
S.
, and
Guinan
,
M.
,
2008
, “
A Constitutive Model for Metals Applicable at High-Strain Rate
,”
J. Appl. Phys.
,
51
(
3
), pp.
1498
1504
.
34.
Liu
,
M.
,
Su
,
Z.
, and
Yuan
,
S.
,
2014
, “
On Propagation Characteristics of Shock Waves Generated Under Hypervelocity Impact
,”
2nd International Conference of Structural Health Monitoring and Integrity Management
,
CRC Press
, Boca Raton, FL, pp.
445
450
.
35.
Sohn
,
H.
, and
Lee
,
S. J.
,
2010
, “
Lamb Wave Tuning Curve Calibration for Surface-Bonded Piezoelectric Transducers
,”
Smart Mater. Struct.
,
19
(
1
), p.
015007
.
36.
Croxford
,
A. J.
,
Moll
,
J.
,
Wilcox
,
P. D.
, and
Michaels
,
J. E.
,
2010
, “
Efficient Temperature Compensation Strategies for Guided Wave Structural Health Monitoring
,”
Ultrasonics
,
50
(
4
), pp.
517
528
.
37.
Michaels
,
J. E.
, and
Michaels
,
T. E.
,
2007
, “
Guided Wave Signal Processing and Image Fusion for In Situ Damage Localization in Plates
,”
Wave Motion
,
44
(
6
), pp.
482
492
.
38.
Li
,
F.
,
Su
,
Z.
,
Ye
,
L.
, and
Meng
,
G.
,
2006
, “
A Correlation Filtering-Based Matching Pursuit (CF-MP) for Damage Identification Using Lamb Waves
,”
Smart Mater. Struct.
,
15
(
6
), pp.
1585
1594
.
39.
Lu
,
Y.
,
Ye
,
L.
,
Su
,
Z.
,
Zhang
,
L.
, and
Li
,
C.
,
2008
, “
Artificial Neural Network (ANN)-Based Crack Identification in Aluminum Plates With Lamb Wave Signals
,”
J. Intell. Mater. Syst. Struct.
,
20
(
1
), pp.
39
49
.
40.
Wang
,
C. H.
,
Rose
,
J. T.
, and
Chang
,
F.-K.
,
2004
, “
A Synthetic Time-Reversal Imaging Method for Structural Health Monitoring
,”
Smart Mater. Struct.
,
13
(
2
), pp.
415
423
.
You do not currently have access to this content.