By incorporating modified Langmuir kinetic model, a novel slowly time-varying dynamical model of in situ micromechanical sensors is proposed to real-time monitor atomic or molecular adsorptions on the solid surface in a viscous fluid. First, Langmuir kinetic model is modified by the introduction of time-varying concentrations of analytes. Second, van der Waals (vdW), Coulomb, and biomolecular interactions for uncharged adsorbates, charged ones, and double-stranded DNAs (dsDNAs) are adopted, respectively, to develop the governing equation of time-varying vibrational systems with Hamilton's principle. It can be found that the adsorption-induced surface effects are incorporated into the dynamical equation of sensors due to real-time adsorptions. Third, the dynamical model is validated with the theoretical results of O atoms on Si (100) surface and the experimental data of dsDNAs interactions. The results show that the dynamical behavior is adsorption-induced slowly time-varying vibration due to the time-varying effective mass, stiffness, damping, and equilibrium positions of the microcantilevers. Moreover, comparing the modified Langmuir kinetic model with the unmodified model, the amplitude and phase hysteresis phenomena of frequency shift for resonant sensors can result in huge detection errors. In addition, the fluid effect can dramatically degrade the sensitivity and precision of real-time detection by several orders, which can provide a theoretical foundation to improve the detection sensitivity by reducing the fluid effect. The work demonstrates that it is essential to develop a time-varying dynamical model for in situ real-time label-free detection technique.

References

1.
Modena
,
M. M.
,
Wang
,
Y.
,
Riedel
,
D.
, and
Burg
,
T. P.
,
2014
, “
Resolution Enhancement of Suspended Microchannel Resonators for Weighing of Biomolecular Complexes in Solution
,”
Lab Chip
,
14
(
2
), pp.
342
350
.
2.
Abdollahi
,
A.
, and
Arias
,
I.
,
2015
, “
Constructive and Destructive Interplay Between Piezoelectricity and Flexoelectricity in Flexural Sensors and Actuators
,”
ASME J. Appl. Mech.
,
82
(
12
), p.
121003
.
3.
Arlett
,
J.
,
Myers
,
E.
, and
Roukes
,
M.
,
2011
, “
Comparative Advantages of Mechanical Biosensors
,”
Nat. Nanotechnol.
,
6
(
4
), pp.
203
215
.
4.
Eom
,
K.
,
Park
,
H. S.
,
Yoon
,
D. S.
, and
Kwon
,
T.
,
2011
, “
Nanomechanical Resonators and Their Applications in Biological/Chemical Detection: Nanomechanics Principles
,”
Phys. Rep.
,
503
(
4
), pp.
115
163
.
5.
Krichen
,
S.
, and
Sharma
,
P.
,
2016
, “
Flexoelectricity: A Perspective on an Unusual Electromechanical Coupling
,”
ASME J. Appl. Mech.
,
83
(
3
), p.
030801
.
6.
Buchapudi
,
K. R.
,
Huang
,
X.
,
Yang
,
X.
,
Ji
,
H.-F.
, and
Thundat
,
T.
,
2011
, “
Microcantilever Biosensors for Chemicals and Bioorganisms
,”
Analyst
,
136
(
8
), pp.
1539
1556
.
7.
Yu
,
P.
, and
Shen
,
S.
,
2014
, “
A Fully Coupled Theory and Variational Principle for Thermal–Electrical–Chemical–Mechanical Processes
,”
ASME J. Appl. Mech.
,
81
(
11
), p.
111005
.
8.
Braun
,
T.
,
Ghatkesar
,
M. K.
,
Backmann
,
N.
,
Grange
,
W.
,
Boulanger
,
P.
,
Letellier
,
L.
,
Lang
,
H.-P.
,
Bietsch
,
A.
,
Gerber
,
C.
, and
Hegner
,
M.
,
2009
, “
Quantitative Time-Resolved Measurement of Membrane Protein–Ligand Interactions Using Microcantilever Array Sensors
,”
Nat. Nanotechnol.
,
4
(
3
), pp.
179
185
.
9.
Boisen
,
A.
,
Dohn
,
S.
,
Keller
,
S. S.
,
Schmid
,
S.
, and
Tenje
,
M.
,
2011
, “
Cantilever-Like Micromechanical Sensors
,”
Rep. Prog. Phys.
,
74
(
3
), p.
036101
.
10.
Begley
,
M. R.
, and
Utz
,
M.
,
2008
, “
Multiscale Modeling of Adsorbed Molecules on Freestanding Microfabricated Structures
,”
ASME J. Appl. Mech.
,
75
(
2
), p.
021008
.
11.
Zhang
,
J.-Q.
,
Yu
,
S.-W.
,
Feng
,
X.-Q.
, and
Wang
,
G.-F.
,
2008
, “
Theoretical Analysis of Adsorption-Induced Microcantilever Bending
,”
J. Appl. Phys.
,
103
(
9
), p.
093506
.
12.
Sader
,
J. E.
,
2001
, “
Surface Stress Induced Deflections of Cantilever Plates With Applications to the Atomic Force Microscope: Rectangular Plates
,”
J. Appl. Phys.
,
89
(
5
), pp.
2911
2921
.
13.
McCaig
,
H. C.
,
Myers
,
E.
,
Lewis
,
N. S.
, and
Roukes
,
M. L.
,
2014
, “
Vapor Sensing Characteristics of Nanoelectromechanical Chemical Sensors Functionalized Using Surface-Initiated Polymerization
,”
Nano. Lett.
,
14
(
7
), pp.
3728
3732
.
14.
Stern
,
E.
,
Vacic
,
A.
,
Rajan
,
N. K.
,
Criscione
,
J. M.
,
Park
,
J.
,
Ilic
,
B. R.
,
Mooney
,
D. J.
,
Reed
,
M. A.
, and
Fahmy
,
T. M.
,
2010
, “
Label-Free Biomarker Detection From Whole Blood
,”
Nat. Nanotechnol.
,
5
(
2
), pp.
138
142
.
15.
Eom
,
K.
,
Kwon
,
T. Y.
,
Yoon
,
D. S.
,
Lee
,
H. L.
, and
Kim
,
T. S.
,
2007
, “
Dynamical Response of Nanomechanical Resonators to Biomolecular Interactions
,”
Phys. Rev. B
,
76
(
11
), p.
113408
.
16.
Zhang
,
J.-Q.
,
Yu
,
S.-W.
, and
Feng
,
X.-Q.
,
2008
, “
Theoretical Analysis of Resonance Frequency Change Induced by Adsorption
,”
J. Phys. D: Appl. Phys.
,
41
(
12
), p.
125306
.
17.
Chen
,
G.
,
Thundat
,
T.
,
Wachter
,
E.
, and
Warmack
,
R.
,
1995
, “
Adsorption-Induced Surface Stress and Its Effects on Resonance Frequency of Microcantilevers
,”
J. Appl. Phys.
,
77
(
8
), pp.
3618
3622
.
18.
Zhang
,
Y.
, and
Zhao
,
Y.-P.
,
2015
, “
Mass and Force Sensing of an Adsorbate on a String Resonator
,”
Sens. Actuators B: Chem.
,
221
, pp.
305
311
.
19.
Yi
,
X.
, and
Duan
,
H.
,
2009
, “
Surface Stress Induced by Interactions of Adsorbates and Its Effect on Deformation and Frequency of Microcantilever Sensors
,”
J. Mech. Phys. Solids.
,
57
(
8
), pp.
1254
1266
.
20.
Parsediya
,
D. K.
,
Singh
,
J.
, and
Kankar
,
P. K.
,
2014
, “
Simulation and Analysis of Highly Sensitive MEMS Cantilever Designs for ‘In Vivo Label Free’ Biosensing
,”
Procedia Technol.
,
14
, pp.
85
92
.
21.
Thundat
,
T.
,
Wachter
,
E.
,
Sharp
,
S.
, and
Warmack
,
R.
,
1995
, “
Detection of Mercury Vapor Using Resonating Microcantilevers
,”
Appl. Phys. Lett.
,
66
(
13
), pp.
1695
1697
.
22.
Dareing
,
D. W.
, and
Thundat
,
T.
,
2005
, “
Simulation of Adsorption-Induced Stress of a Microcantilever Sensor
,”
J. Appl. Phys.
,
97
(
4
), p.
043526
.
23.
Zhang
,
J.-Q.
,
Feng
,
X.-Q.
,
Huang
,
G.-Y.
, and
Yu
,
S.-W.
,
2012
, “
Chemisorption-Induced Resonance Frequency Shift of a Microcantilever
,”
Chin. Phys. Lett.
,
29
(
5
), p.
056801
.
24.
Gheshlaghi
,
B.
, and
Hasheminejad
,
S. M.
,
2011
, “
Adsorption-Induced Resonance Frequency Shift in Timoshenko Microbeams
,”
Curr. Appl. Phys.
,
11
(
4
), pp.
1035
1041
.
25.
Zhang
,
Y.
,
2013
, “
Determining the Adsorption-Induced Surface Stress and Mass by Measuring the Shifts of Resonant Frequencies
,”
Sensor. Actuators A: Phys.
,
194
, pp.
169
175
.
26.
Zhang
,
Y.
,
Zhuo
,
L.
, and
Zhao
,
H.
,
2013
, “
Determining the Effects of Surface Elasticity and Surface Stress by Measuring the Shifts of Resonant Frequencies
,”
Proc. R. Soc. A.
,
469
(
2159
).
27.
Zhang
,
Y.
,
2014
, “
Detecting the Stiffness and Mass of Biochemical Adsorbates by a Resonator Sensor
,”
Sens. Actuators B: Chem.
,
202
, pp.
286
293
.
28.
Tamayo
,
J.
,
Ramos
,
D.
,
Mertens
,
J.
, and
Calleja
,
M.
,
2006
, “
Effect of the Adsorbate Stiffness on the Resonance Response of Microcantilever Sensors
,”
Appl. Phys. Lett.
,
89
(
22
), p.
224104
.
29.
Laborde
,
C.
,
Pittino
,
F.
,
Verhoeven
,
H.
,
Lemay
,
S.
,
Selmi
,
L.
,
Jongsma
,
M.
, and
Widdershoven
,
F.
,
2015
, “
Real-Time Imaging of Microparticles and Living Cells With CMOS Nanocapacitor ARrays
,”
Nat. Nanotechnol.
,
10
(
9
), pp.
791
795
.
30.
Shuhendler
,
A. J.
,
Pu
,
K.
,
Cui
,
L.
,
Uetrecht
,
J. P.
, and
Rao
,
J.
,
2014
, “
Real-Time Imaging of Oxidative and Nitrosative Stress in the Liver of Live Animals for Drug-Toxicity Testing
,”
Nat. Biotechnol.
,
32
(
4
), pp.
373
380
.
31.
Martinez
,
R. E.
,
Augustyniak
,
W. M.
, and
Golovchenko
,
J. A.
,
1990
, “
Direct Measurement of Crystal Surface Stress
,”
Phys. Rev. Lett.
,
64
(
9
), pp.
1035
1038
.
32.
Karpovich
,
D.
, and
Blanchard
,
G.
,
1994
, “
Direct Measurement of the Adsorption Kinetics of Alkanethiolate Self-Assembled Monolayers on a Microcrystalline Gold Surface
,”
Langmuir
,
10
(
9
), pp.
3315
3322
.
33.
Clifton
,
L. A.
,
Clifton
,
D.
,
Farmery
,
A.
, and
Hahn
,
C.
,
2015
, “
A Non-Invasive Method for Estimating Lung Function
,”
Int. J. Cond. Monit.
,
5
(
3
), pp.
2
5
.
34.
de Picciotto
,
S.
,
Imperiali
,
B.
,
Griffith
,
L. G.
, and
Wittrup
,
K. D.
,
2014
, “
Equilibrium and Dynamic Design Principles for Binding Molecules Engineered for Reagentless Biosensors
,”
Anal. Biochem.
,
460
, pp.
9
15
.
35.
Kierat
,
W.
, and
Popiolek
,
Z.
,
2016
, “
Methods of the Gas Concentration Sinusoidal and Step Changes Generation for Dynamic Properties of Gas Concentration Meters Testing
,”
Measurement
,
88
, pp.
131
136
.
36.
Strey
,
H.
,
Parsegian
,
V.
, and
Podgornik
,
R.
,
1999
, “
Equation of State for Polymer Liquid Crystals: Theory and Experiment
,”
Phys. Rev. E
,
59
(
1
), pp.
999
1008
.
37.
Bustamante
,
C.
,
Bryant
,
Z.
, and
Smith
,
S. B.
,
2003
, “
Ten Years of Tension: Single-Molecule DNA Mechanics
,”
Nature
,
421
(
6921
), pp.
423
427
.
38.
Grönbeck
,
H.
,
Curioni
,
A.
, and
Andreoni
,
W.
,
2000
, “
Thiols and Disulfides on the Au (111) Surface: The Headgroup-Gold Interaction
,”
J. Am. Chem. Soc
,
122
(
16
), pp.
3839
3842
.
39.
Hu
,
K.-M.
,
Zhang
,
W.-M.
,
Zhong
,
Z.-Y.
,
Peng
,
Z.-K.
, and
Meng
,
G.
,
2014
, “
Effect of Surface Layer Thickness on Buckling and Vibration of Nonlocal Nanowires
,”
Phys. Lett. A
,
378
(
7
), pp.
650
654
.
40.
Hu
,
K.-M.
,
Zhang
,
W.-M.
,
Peng
,
Z.-K.
, and
Meng
,
G.
,
2016
, “
Transverse Vibrations of Mixed-Mode Cracked Nanobeams With Surface Effect
,”
ASME J. Vib. Acoust.
,
138
(
1
), p.
011020
.
41.
Wang
,
G.-F.
, and
Feng
,
X.-Q.
,
2009
, “
Surface Effects on Buckling of Nanowires Under Uniaxial Compression
,”
Appl. Phys. Lett.
,
94
(
14
), p.
141913
.
42.
Zhang
,
W.-M.
,
Hu
,
K.-M.
,
Yang
,
B.
,
Peng
,
Z.-K.
, and
Meng
,
G.
,
2016
, “
Effects of Surface Relaxation and Reconstruction on the Vibration Characteristics of Nanobeams
,”
J. Phys. D: Appl. Phys.
,
49
(
16
), p.
165304
.
43.
Kiracofe
,
D.
, and
Raman
,
A.
,
2010
, “
Microcantilever Dynamics in Liquid Environment Dynamic Atomic Force Microscopy When Using Higher-Order Cantilever Eigenmodes
,”
J. Appl. Phys.
,
108
(
3
), p.
034320
.
44.
Yang
,
M.
,
Yau
,
H. C.
, and
Chan
,
H. L.
,
1998
, “
Adsorption Kinetics and Ligand-Binding Properties of Thiol-Modified Double-Stranded DNA on a Gold Surface
,”
Langmuir
,
14
(
21
), pp.
6121
6129
.
45.
Kwon
,
T.
,
Eom
,
K.
,
Park
,
J.
,
Yoon
,
D. S.
,
Lee
,
H. L.
, and
Kim
,
T. S.
,
2008
, “
Micromechanical Observation of the Kinetics of Biomolecular Interactions
,”
Appl. Phys. Lett.
,
93
(
17
), p.
173901
.
You do not currently have access to this content.