A three-phase cylinder model (inclusion/matrix/composite) is proposed and analyzed for one-dimensional (1D) piezoelectric quasi-crystal composites. The exact closed-form solutions of the stresses of the phonon and phason fields and the electric field are derived under far-field antiplane mechanical and in-plane electric loadings via the Laurent expansion technique. Numerical results show that the thickness and material properties of the interphase layer can significantly affect the induced fields in the inclusion and interphase layer. Furthermore, the generalized self-consistent method is applied to predict analytically the effective moduli of the piezoelectric quasi-crystal composites. It is observed from the numerical examples that the effective moduli of piezoelectric quasi-crystal composites are very sensitive to the fiber volume fraction as well as to the individual material properties of the fiber and matrix. By comparing QC/PE with QC1/QC2, PE/QC, and PZT-7/epoxy, we found that using QC as fiber could, in general, enhance the effective properties, a conclusion which is in agreement with the recent experimental results.

References

References
1.
Shechtman
,
D.
,
Blech
,
I.
,
Gratias
,
D.
, and
Cahn
,
J. W.
,
1984
, “
Metallic Phase With Long-Range Orientational Order and No Translational Symmetry
,”
Phys. Rev. Lett.
,
53
(
20
), pp.
1951
1953
.
2.
Thiel
,
P. A.
, and
Dubois
,
J. M.
,
1999
, “
Quasicrystals. Reaching Maturity for Technological Applications
,”
Mater. Today
,
2
(
3
), pp.
3
7
.
3.
Sakly
,
A.
,
Kenzari
,
S.
,
Bonina
,
D.
,
Corbel
,
S.
, and
Fournée
,
V.
,
2014
, “
A Novel Quasicrystal-Resin Composite for Stereolithography
,”
Mater. Des.
,
56
, pp.
280
285
.
4.
Guo
,
X. P.
,
Chen
,
J. F.
,
Yu
,
H. L.
,
Liao
,
H. L.
, and
Coddet
,
C.
,
2015
, “
A Study on the Microstructure and Tribological Behavior of Cold-Sprayed Metal Matrix Composites Reinforced by Particulate Quasicrystal
,”
Surf. Coat. Technol.
,
268
, pp.
94
98
.
5.
Zhang
,
Y.
,
Zhang
,
J.
,
Wu
,
G. H.
,
Liu
,
W. C.
,
Zhang
,
L.
, and
Ding
,
W. J.
,
2015
, “
Microstructure and Tensile Properties of As-Extruded Mg-Li-Zn-Gd Alloys Reinforced With Icosahedral Quasicrystal Phase
,”
Mater. Des.
,
66
(
A
), pp.
162
168
.
6.
Tian
,
Y.
,
Huang
,
H.
,
Yuan
,
G. Y.
,
Chen
,
C. L.
,
Wang
,
Z. C.
, and
Ding
,
W. J.
,
2014
, “
Nanoscale Icosahedral Quasicrystal Phase Precipitation Mechanism During Annealing for Mg-Zn-Gd-Based Alloys
,”
Mater. Lett.
,
130
, pp.
236
239
.
7.
Hu
,
C. Z.
,
Wang
,
R.
,
Ding
,
D. H.
, and
Yang
,
W.
,
1997
, “
Piezoelectric Effects in Quasicrystals
,”
Phys. Rev. B
,
56
(
5
), pp.
2463
2468
.
8.
Fujiwara
,
T.
,
Laissardiere
,
G. T.
, and
Yamamoto
,
S.
,
1994
, “
Electronic Structure and Electron Transport in Quasicrystals
,”
Mater. Sci. Forum
,
150–151
, pp.
387
394
.
9.
Zhang
,
D. L.
,
2010
, “
Electronic Properties of Stable Decagonal Quasicrystals
,”
Phys. Status Solidi A
,
207
(
12
), pp.
2666
2673
.
10.
Yang
,
W. G.
,
Wang
,
R.
,
Ding
,
D. H.
, and
Hu
,
C. Z.
,
1995
, “
Elastic Strains Induced by Electric Fields in Quasicrystals
,”
J. Phys. Condens. Matter
,
7
(
39
), pp.
L499
L502
.
11.
Li
,
C. L.
, and
Liu
,
Y. Y.
,
2004
, “
The Physical Property Tensors of One-Dimensional Quasicrystals
,”
Chin. Phys.
,
13
(
6
), pp.
924
931
.
12.
Rao
,
K. R. M.
,
Rao
,
P. H.
, and
Chaitanya
,
B. S. K.
,
2007
, “
Piezoelectricity in Quasicrystals: A Group-Theoretical Study
,”
Pramana J. Phys.
,
68
(
3
), pp.
481
487
.
13.
Altay
,
G.
, and
Cengiz Dökmeci
,
M.
,
2012
, “
On the Fundamental Equations of Piezoelasticity of Quasicrystal Media
,”
Int. J. Solids Struct.
,
49
(
23–24
), pp.
3255
3262
.
14.
Li
,
X. Y.
,
Li
,
P. D.
,
Wu
,
T. H.
,
Shi
,
M. X.
, and
Zhu
,
Z. W.
,
2014
, “
Three-Dimensional Fundamental Solutions for One-Dimensional Hexagonal Quasicrystal With Piezoelectric Effect
,”
Phys. Lett. A
,
378
(
10
), pp.
826
834
.
15.
Yu
,
J.
,
Guo
,
J. H.
,
Pan
,
E.
, and
Xing
,
Y. M.
,
2015
, “
General Solutions of One-Dimensional Quasicrystal Piezoelectric Materials and Its Application on Fracture Mechanics
,”
Appl. Math. Mech.
,
36
(
6
), pp.
793
814
.
16.
Yu
,
J.
,
Guo
,
J. H.
, and
Xing
,
Y. M.
,
2015
, “
Complex Variable Method for an Anti-Plane Elliptical Cavity of One-Dimensional Hexagonal Piezoelectric Quasicrystals
,”
Chin. J. Aeronaut.
,
28
(
4
), pp.
1287
1295
.
17.
Shi
,
W. C.
,
2009
, “
Collinear Periodic Cracks and/or Rigid Line Inclusions of Antiplane Sliding Mode in One-Dimensional Hexagonal Quasicrystal
,”
Appl. Math. Comp.
,
215
(
3
) pp.
1062
1067
.
18.
Gao
,
Y.
, and
Ricoeurb
,
A.
,
2012
, “
Three-Dimensional Analysis of a Spheroidal Inclusion in a Two-Dimensional Quasicrystal Body
,”
Philos. Mag.
,
92
(
34
), pp.
4334
4353
.
19.
Guo
,
J. H.
,
Zhang
,
Z. Y.
, and
Xing
,
Y. M.
,
2016
, “
Antiplane Analysis for an Elliptical Inclusion in 1D Hexagonal Piezoelectric Quasicrystal Composites
,”
Philos. Mag.
,
96
(
4
), pp.
349
369
.
20.
Dunn
,
M. L.
, and
Taya
,
M.
,
1993
, “
Micromechanics Predictions of the Effective Electroelastic Moduli of Piezoelectric Composites
,”
Int. J. Solids Struct.
,
30
(
2
), pp.
161
175
.
21.
Christensen
,
R. M.
, and
Lo
,
K. H.
,
1979
, “
Solutions for Effective Shear Properties in Three Phase Sphere and Cylinder Models
,”
J. Mech. Phys. Solids
,
27
(
4
), pp.
315
330
.
22.
Christensen
,
R. M.
,
1993
, “
Effective Properties of Composite Materials Containing Voids
,”
Proc. Roy. Soc. A
,
440
(
1909
), pp.
461
473
.
23.
Luo
,
H. A.
, and
Weng
,
G. J.
,
1987
, “
On Eshelby's Inclusions Problem in a Three-Phase Spherically Concentric Solid and a Modification of Mori–Tanaka's Method
,”
Mech. Mater.
,
6
(
4
), pp.
347
361
.
24.
Huang
,
Y.
, and
Hu
,
K. X.
,
1995
, “
A Generalized Self-Consistent Mechanics Method for Solids Containing Elliptical Inclusions
,”
ASME J. Appl. Mech.
,
62
(
3
), pp.
566
572
.
25.
Jiang
,
C. P.
, and
Cheung
,
Y. K.
,
1998
, “
A Fiber/Matrix/Composite Model With a Combined Confocal Elliptical Cylinder Unit Cell for Predicting the Effective Longitudinal Shear Modulus
,”
Int. J. Solids Struct.
,
35
(
30
), pp.
3977
3987
.
26.
Riccardi
,
A.
, and
Montheilet
,
F.
,
1999
, “
A Generalized Self-Consistent Method for Solids Containing Randomly-Oriented Spheroidal Inclusions
,”
Acta Mech.
,
133
(
1
), pp.
39
50
.
27.
Jiang
,
C. P.
, and
Cheung
,
Y. K.
,
2001
, “
An Exact Solution for the Three-Phase Piezoelectric Cylinder Model Under Antiplane Shear and Its Applications to Piezoelectric Composites
,”
Int. J. Solids Struct.
,
38
(
28–29
), pp.
4777
4796
.
28.
Huang
,
Y.
,
Hu
,
K. X.
,
Wei
,
A.
, and
Chandra
,
X.
,
1994
, “
A Generalized Self-Consistent Mechanics Method for Composite Materials With Multiphase Inclusion
,”
J. Mech. Phys. Solids
,
42
(
3
), pp.
491
504
.
29.
Jiang
,
C. P.
,
Tong
,
Z. H.
, and
Cheung
,
Y. K.
,
2001
, “
A Generalized Self-Consistent Method for Piezoelectric Fiber Reinforced Composites Under Antiplane Shear
,”
Mech. Mater.
,
33
(
5
), pp.
295
308
.
30.
Pak
,
Y. E.
,
1992
, “
Circular Inclusion Problem in Antiplane Piezoelectricity
,”
Int. J. Solids Struct.
,
29
(
19
), pp.
2403
2419
.
31.
Mishra
,
D.
,
Park
,
C. Y.
,
Yoo
,
S. H.
, and
Pak
,
Y. E.
,
2013
, “
Closed-Form Solution for Elliptical Inclusion Problem in Antiplane Piezoelectricity With Far-Field Loading at an Arbitrary Angle
,”
Eur. J. Mech. A/Solids
,
40
, pp.
186
197
.
32.
Pak
,
Y. E.
,
1992
, “
Longitudinal Shear Transfer in Fiber Optic Sensors
,”
Smart Mater. Struct.
,
1
(
1
), pp.
57
62
.
33.
Hashin
,
Z.
, and
Rosen
,
B. W.
,
1964
, “
The Elastic Moduli of Fiber Reinforced Materials
,”
ASME J. Appl. Mech.
,
31
(
2
), pp.
223
232
.
34.
Whitney
,
J. M.
, and
Rilely
,
M. B.
,
1966
, “
Elastic Properties of Fiber Reinforced Composite Materials
,”
AIAA J.
,
4
(
9
), pp.
1537
1542
.
35.
Kuo
,
H. Y.
, and
Pan
,
E.
,
2011
, “
Effective Magnetoelectric Effect in Multicoated Circular Fibrous Multiferroic Composites
,”
J. Appl. Phys.
,
109
(
10
), p.
104901
.
You do not currently have access to this content.