The well-known Hill's averaging theorems for stresses and strains as well as the so-called Hill–Mandel condition are essential ingredients for the coupling and the consistency between the micro- and macroscales in multiscale finite-element procedures (FE2). We show in this paper that these averaging relations hold exactly under standard finite-element (FE) discretizations, even if the stress field is discontinuous across elements and the standard proofs based on the divergence theorem are no longer suitable. The discrete averaging results are derived for the three classical types of boundary conditions (BC) (affine displacement, periodic, and uniform traction BC) using the properties of the shape functions and the weak form of the microscopic equilibrium equations without further kinematic constraints. The analytical proofs are further verified numerically through a simple FE simulation of an irregular representative volume element (RVE) undergoing large deformations. Furthermore, the proofs are extended to include the effects of body forces and inertia, and the results are consistent with those in the smooth continuum setting. This work provides a solid foundation to apply Hill's averaging relations in multiscale FE methods without introducing an additional error in the scale transition due to the discretization.

References

1.
Feyel
,
F.
, and
Chaboche
,
J.-L.
,
2000
, “
FE2 Multiscale Approach for Modelling the Elastoviscoplastic Behaviour of Long Fibre SiC/Ti Composite Materials
,”
Comput. Methods Appl. Mech. Eng.
,
183
(
3
), pp.
309
330
.
2.
Terada
,
K.
,
Hori
,
M.
,
Kyoya
,
T.
, and
Kikuchi
,
N.
,
2000
, “
Simulation of the Multi-Scale Convergence in Computational Homogenization Approaches
,”
Int. J. Solids Struct.
,
37
(
16
), pp.
2285
2311
.
3.
Miehe
,
C.
,
Schröder
,
J.
, and
Schotte
,
J.
,
1999
, “
Computational Homogenization Analysis in Finite Plasticity Simulation of Texture Development in Polycrystalline Materials
,”
Comput. Methods Appl. Mech. Eng.
,
171
(
3
), pp.
387
418
.
4.
Miehe
,
C.
,
Schotte
,
J.
, and
Lambrecht
,
M.
,
2002
, “
Homogenization of Inelastic Solid Materials at Finite Strains Based on Incremental Minimization Principles: Application to the Texture Analysis of Polycrystals
,”
J. Mech. Phys. Solids
,
50
(
10
), pp.
2123
2167
.
5.
Smit
,
R.
,
Brekelmans
,
W.
, and
Meijer
,
H.
,
1998
, “
Prediction of the Mechanical Behavior of Nonlinear Heterogeneous Systems by Multi-Level Finite Element Modeling
,”
Comput. Methods Appl. Mech. Eng.
,
155
(
1
), pp.
181
192
.
6.
Reina
,
C.
,
Li
,
B.
,
Weinberg
,
K.
, and
Ortiz
,
M.
,
2013
, “
A Micromechanical Model of Distributed Damage Due to Void Growth in General Materials and Under General Deformation Histories
,”
Int. J. Numer. Methods Eng.
,
93
(
6
), pp.
575
611
.
7.
Nguyen
,
V. P.
,
Lloberas-Valls
,
O.
,
Stroeven
,
M.
, and
Sluys
,
L. J.
,
2011
, “
Homogenization-Based Multiscale Crack Modelling: From Micro-Diffusive Damage to Macro-Cracks
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
9
), pp.
1220
1236
.
8.
Pham
,
K.
,
Kouznetsova
,
V.
, and
Geers
,
M.
,
2013
, “
Transient Computational Homogenization for Heterogeneous Materials Under Dynamic Excitation
,”
J. Mech. Phys. Solids
,
61
(
11
), pp.
2125
2146
.
9.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
(
5
), pp.
357
372
.
10.
Hill
,
R.
,
1967
, “
The Essential Structure of Constitutive Laws for Metal Composites and Polycrystals
,”
J. Mech. Phys. Solids
,
15
(
2
), pp.
79
95
.
11.
Hill
,
R.
,
1972
, “
On Constitutive Macro-Variables for Heterogeneous Solids at Finite Strain
,”
Proc. R. Soc. London A
,
326
(
1565
), pp.
131
147
.
12.
Mandel
,
J.
,
1972
,
Plasticité classique et viscoplasticité: CISM-1971
,
Springer-Verlag
,
New York
.
13.
Willis
,
J. R.
,
1981
, “
Variational and Related Methods for the Overall Properties of Composites
,”
Adv. Appl. Mech.
,
21
, pp.
1
78
.
14.
Suquet
,
P.
,
1987
, “
Elements of Homogenization for Inelastic Solid Mechanics
,”
Homogenization Techniques for Composite Media
, Vol.
272
,
Springer
,
New York
, pp.
193
278
.
15.
Nemat-Nasser
,
S.
,
1999
, “
Averaging Theorems in Finite Deformation Plasticity
,”
Mech. Mater.
,
31
(
8
), pp.
493
523
.
16.
Zohdi
,
T. I.
, and
Wriggers
,
P.
,
2008
,
An Introduction to Computational Micromechanics
,
Springer Science & Business Media
, New York.
17.
Hori
,
M.
, and
Nemat-Nasser
,
S.
,
1999
, “
On Two Micromechanics Theories for Determining Micro–Macro Relations in Heterogeneous Solids
,”
Mech. Mater.
,
31
(
10
), pp.
667
682
.
18.
Nemat-Nasser
,
S.
, and
Hori
,
M.
,
2013
,
Micromechanics: Overall Properties of Heterogeneous Materials
,
Elsevier
, Amsterdam, The Netherlands.
19.
Kachanov
,
M.
,
1992
, “
Effective Elastic Properties of Cracked Solids: Critical Review of Some Basic Concepts
,”
ASME Appl. Mech. Rev.
,
45
(
8
), pp.
304
335
.
20.
Li
,
S.
, and
Wang
,
G.
,
2008
,
Introduction to Micromechanics and Nanomechanics
, Vol.
278
,
World Scientific
, Hackensack, NJ.
21.
Molinari
,
A.
, and
Mercier
,
S.
,
2001
, “
Micromechanical Modelling of Porous Materials Under Dynamic Loading
,”
J. Mech. Phys. Solids
,
49
(
7
), pp.
1497
1516
.
22.
Ricker
,
S.
,
Mergheim
,
J.
, and
Steinmann
,
P.
,
2009
, “
On the Multiscale Computation of Defect Driving Forces
,”
Int. J. Multiscale Comput. Eng.
,
7
(
5
), pp.
457
474
.
23.
Reina
,
C.
,
2011
, “
Multiscale Modeling and Simulation of Damage by Void Nucleation and Growth
,”
Ph.D. thesis
, California Institute of Technology, Pasadena, CA.
24.
de Souza Neto
,
E.
,
Blanco
,
P.
,
Sánchez
,
P.
, and
Feijóo
,
R.
,
2015
, “
An RVE-Based Multiscale Theory of Solids With Micro-Scale Inertia and Body Force Effects
,”
Mech. Mater.
,
80
(Part A), pp.
136
144
.
25.
Perić
,
D.
,
de Souza Neto
,
E.
,
Feijóo
,
R.
,
Partovi
,
M.
, and
Molina
,
A.
,
2011
, “
On Micro-to-Macro Transitions for Multi-Scale Analysis of Non-Linear Heterogeneous Materials: Unified Variational Basis and Finite Element Implementation
,”
Int. J. Numer. Methods Eng.
,
87
(
1–5
), pp.
149
170
.
26.
Hughes
,
T. J.
,
2012
,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Courier Dover Publications
, Mineola, NY.
You do not currently have access to this content.