In this paper, based on the nonlinear strain–deformation relationship, the dynamics equation of a spatial curved beam undergoing large displacement and small deformation is deduced using the finite-element method of floating frame of reference (FEMFFR) and Hamiltonian variation principle. The stress-stiffening effect, which is also called geometric stiffening effect, is accounted for in the dynamics equation, which makes it possible for the dynamics simulation of the spatial curved beam with high rotational speed. A numerical example is carried out by using the deduced dynamics equation to analyze the stress-stiffening effect of the curved beam and then verified by abaqus software. Then, the modal synthesis methods, which result in much fewer numbers of coordinates, are employed to improve the computational efficiency.

References

1.
Shabana
,
A. A.
,
2013
,
Dynamics of Multibody Systems
, 4th ed.,
Cambridge University Press
,
New York
.
2.
Wallrapp
,
O.
, and
Wiedemann
,
S.
,
2003
, “
Comparison of Results in Flexible Multibody Dynamics Using Various Approaches
,”
J. Nonlinear Dyn.
,
34
(
1
), pp.
189
206
.
3.
Carnegie
,
W.
,
1959
, “
Vibrations of Rotating Cantilever Blading
,”
J. Mech. Eng. Sci.
,
1
(
3
), pp.
235
240
.
4.
Kane
,
T. R.
,
Ryan
,
R. R.
, and
Banerjee
,
A. K.
,
1987
, “
Dynamics of a Cantilever Beam Attached to a Moving Base
,”
J. Guid. Control
,
10
(
2
), pp.
139
151
.
5.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
A Three-Dimensional Finite-Strain Rod Model: Part II
,”
Comput. Methods Appl. Mech. Eng.
,
58
(
1
), pp.
79
116
.
6.
Escalona
,
J. L.
,
Hussein
,
A. H.
, and
Shabana
,
A. A.
,
1998
, “
Application of the Absolute Nodal Coordinate Formulation to Multibody System Dynamics
,”
J. Sound Vib.
,
214
(
5
), pp.
833
851
.
7.
Wu
,
S. C.
, and
Haug
,
E. J.
,
1988
, “
Geometric Non-Linear Substructuring for Dynamics of Flexible Mechanical Systems
,”
Int. J. Numer. Methods Eng.
,
26
(
10
), pp.
2211
2226
.
8.
Bakr
,
E. M.
, and
Shabana
,
A. A.
,
1986
, “
Geometrically Nonlinear Analysis of Multibody Systems
,”
Comput. Struct.
,
23
(
6
), pp.
739
751
.
9.
Yigit
,
A. S.
,
Scott
,
R. A.
, and
Ulsoy
,
A. G.
,
1988
, “
Flexural Motion of a Radially Rotating Beam Attached to a Rigid Body
,”
J. Sound Vib.
,
121
(
2
), pp.
201
210
.
10.
Wallrapp
,
O.
, and
Schwertassek
,
R.
,
1991
, “
Representation of Geometric Stiffening in Multibody System Simulation
,”
Int. J. Numer. Methods Eng.
,
32
(
8
), pp.
1833
1850
.
11.
Mayo
,
J.
, and
Domínguez
,
J.
,
1997
, “
A Finite Element Geometrically Nonlinear Dynamic Formulation of Flexible Multibody Systems Using a New Displacements Representation
,”
ASME J. Vib. Acoust.
,
119
(
4
), pp.
573
581
.
12.
Hansbo
,
P.
,
Larson
,
M. G.
, and
Larsson
,
K.
,
2014
, “
Variational Formulation of Curved Beams in Global Coordinates
,”
Comput. Mech.
,
53
(
4
), pp.
611
623
.
13.
Rajasekaran
,
S.
,
2014
, “
Analysis of Curved Beams Using a New Differential Transformation Based Curved Beam Element
,”
Meccanica
,
49
(
4
), pp.
863
886
.
14.
Craig
,
R. R.
, Jr.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.
15.
Juana
,
M. M.
,
Daniel
,
G. V.
, and
Jaime
,
D.
,
2004
, “
Study of the Geometric Stiffening Effect: Comparison of Different Formulations
,”
Multibody Syst. Dyn.
,
11
(4), pp.
321
341
.
You do not currently have access to this content.