A sharp-interface numerical approach is developed for modeling the electrochemical environment in crevices and pits due to galvanic corrosion in aqueous media. The concentration of chemical species and the electrical potential in the crevice or pit solution environment is established using the steady state Nernst–Planck equations along with the assumption of local electroneutrality (LEN). The metal-electrolyte interface fluxes are defined in terms of the cathodic and anodic current densities using Butler–Volmer kinetics. The extended finite element method (XFEM) is employed to discretize the nondimensionalized governing equations of the model and a level set function is used to describe the interface morphology independent of the underlying finite element mesh. Benchmark numerical studies simulating intergranular crevice corrosion in idealized aluminum–magnesium (Al–Mg) alloy microstructures in two dimensions are presented. Simulation results indicate that corrosive dissolution of magnesium is accompanied by an increase in the pH and chloride concentration of the crevice solution environment, which is qualitatively consistent with experimental observations. Even for low current densities the model predicted pH is high enough to cause passivation, which may not be physically accurate; however, this model limitation could be overcome by including the hydrolysis reactions that potentially decrease the pH of the crevice solution environment. Finally, a mesh convergence study is performed to establish the accuracy of the XFEM and a sensitivity study examining the relationship between crevice geometry and species concentrations is presented to demonstrate the robustness of the XFEM formulation in handling complex corrosion interface morphologies.

References

1.
Frankel
,
G. S.
, and
Sridhar
,
N.
,
2008
, “
Understanding Localized Corrosion
,”
Mater. Today
,
11
(
10
), pp.
38
44
.
2.
Lee
,
D.
,
Huang
,
Y.
, and
Achenbach
,
J. D.
,
2015
, “
A Comprehensive Analysis of the Growth Rate of Stress Corrosion Cracks
,”
Proc. R. Soc. London, Ser. A
,
471
(
2178
), p.
20140703
.
3.
Hoeppner
,
D. W.
, and
Taylor
,
A. M. H.
,
2011
, “
AVT-140 Corrosion Fatigue and Environmentally Assisted Cracking in Aging Military Vehicles
,”
Modeling Pitting Corrosion Fatigue: Pit Growth and Pit/Crack Transition Issues
,
NATO, RTO
,
France
, Chap. 13.
4.
Gurtin
,
M. E.
, and
Ian
,
M. A.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
57
(
4
), pp.
291
323
.
5.
Gurtin
,
M. E.
, and
Voorhees
,
P. W.
,
1993
, “
The Continuum Mechanics of Coherent Two-Phase Elastic Solids With Mass Transport
,”
Proc. R. Soc. London, Ser. A
,
440
(
1909
), pp.
323
343
.
6.
Scully
,
J. C.
,
1990
,
The Fundamentals of Corrosion
, 3rd ed.,
Pergamon Press
,
New York
.
7.
Sharland
,
S. M.
,
Jackson
,
C. P.
, and
Diver
,
A. J.
,
1989
, “
A Finite-Element Model of the Propagation of Corrosion Crevices and Pits
,”
Corros. Sci.
,
29
(
9
), pp.
1149
1166
.
8.
Song
,
G.-L.
,
2014
, “
The Grand Challenges in Electrochemical Corrosion Research
,”
Front. Mater.
,
1
, p.
00002
.
9.
Alkire
,
R.
, and
Siitari
,
D.
,
1979
, “
The Location of Cathodic Reaction During Localized Corrosion
,”
J. Electrochem. Soc.
,
126
(
1
), pp.
15
22
.
10.
Laycock
,
N. J.
,
White
,
S. P.
,
Noh
,
J. S.
,
Wilson
,
P. T.
, and
Newman
,
R. C.
,
1998
, “
Perforated Covers for Propagating Pits
,”
J. Electrochem. Soc.
,
145
(
4
), pp.
1101
1108
.
11.
Scheiner
,
S.
, and
Hellmich
,
C.
,
2007
, “
Stable Pitting Corrosion of Stainless Steel as Diffusion-Controlled Dissolution Process With a Sharp Moving Electrode Boundary
,”
Corros. Sci.
,
49
(
2
), pp.
319
346
.
12.
Scheiner
,
S.
, and
Hellmich
,
C.
,
2009
, “
Finite Volume Model for Diffusion and Activation-Controlled Pitting Corrosion of Stainless Steel
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
37–40
), pp.
2898
2910
.
13.
Duddu
,
R.
,
2014
, “
Numerical Modeling of Corrosion Pit Propagation Using the Combined Extended Finite Element and Level Set Method
,”
Comput. Mech.
,
54
(
3
), pp.
613
627
.
14.
Sharland
,
S. M.
, and
Tasker
,
P. W.
,
1988
, “
A Mathematical Model of Crevice and Pitting Corrosion—I. The Physical Model
,”
Corros. Sci.
,
28
(
6
), pp.
603
620
.
15.
Sharland
,
S. M.
,
1988
, “
A Mathematical Model of Crevice and Pitting Corrosion—II. The Mathematical Solution
,”
Corros. Sci.
,
28
(
6
), pp.
621
630
.
16.
Walton
,
J. C.
,
1990
, “
Mathematical Modeling of Mass Transport and Chemical Reaction in Crevice and Pitting Corrosion
,”
Corros. Sci.
,
30
(
8/9
), pp.
915
928
.
17.
Malki
,
B.
,
Souier
,
T.
, and
Baroux
,
B.
,
2008
, “
Influence of the Alloying Elements on Pitting Corrosion of Stainless Steels: A Modeling Approach
,”
J. Electrochem. Soc.
,
155
(
12
), pp.
C583
C587
.
18.
Oltra
,
R.
,
Malki
,
B.
, and
Rechou
,
F.
,
2010
, “
Influence of Aeration on the Localized Trenching on Aluminum Alloys
,”
Electrochim. Acta
,
55
(
15
), pp.
4536
4532
.
19.
Xiao
,
J.
, and
Chaudhuri
,
S.
,
2011
, “
Predictive Modeling of Localized Corrosion: An Application to Aluminum Alloys
,”
Electrochim. Acta
,
56
(
24
), pp.
5630
5641
.
20.
Sarkar
,
S.
, and
Aquino
,
W.
,
2011
, “
Electroneutrality and Ionic Interactions in the Modeling of Mass Transport in Dilute Electrochemical Systems
,”
Electrochim. Acta
,
56
(
16
), pp.
8969
8978
.
21.
Sarkar
,
S.
,
Warner
,
J. E.
, and
Aquino
,
W.
,
2012
, “
A Numerical Framework for the Modeling of Corrosive Dissolution
,”
Corros. Sci.
,
65
, pp.
502
511
.
22.
Sarkar
,
S.
, and
Aquino
,
W.
,
2013
, “
Changes in Electrodic Reaction Rates Due to Elastic Stress and Stress-Induced Surface Patterns
,”
Electrochim. Acta
,
11
(
16
), pp.
814
822
.
23.
Sarkar
,
S.
,
Warner
,
J. E.
,
Aquino
,
W.
, and
Grigoriu
,
M. D.
,
2014
, “
Stochastic Reduced Order Models for Uncertainty Quantification of Intergranular Corrosion Rates
,”
Corros. Sci.
,
80
, pp.
257
268
.
24.
Laycock
,
N. J.
, and
White
,
S. P.
,
2001
, “
Computer Simulation of Single Pit Propagation in Stainless Steel Under Potentiostatic Control
,”
J. Electrochim. Soc.
,
148
(
7
), pp.
B264
B275
.
25.
Vagbharathi
,
A. S.
, and
Gopalakrishnan
,
S.
,
2014
, “
An Extended Finite Element Model Coupled With Level Set Method for Analysis of Growth of Corrosion in Pits in Metallic Structures
,”
Proc. R. Soc. London, Ser. A
,
470
(
2168
), p.
20140001
.
26.
Lee
,
D.
,
Huang
,
Y.
, and
Achenbach
,
J. D.
,
2015
, “
Probabilistic Analysis of Stress Corrosion Crack Growth and Related Structural Reliability Considerations
,”
ASME J. Appl. Mech.
,
83
(
2
), p.
021003
.
27.
Chen
,
Z.
, and
Bobaru
,
F.
,
2015
, “
Peridynamic Modeling of Pitting Corrosion Damage
,”
J. Mech. Phys. Solids
,
78
, pp.
352
381
.
28.
Chen
,
Z.
,
Zhang
,
G.
, and
Bobaru
,
F.
,
2016
, “
The Influence of Passive Film Damage on Pitting Corrosion
,”
J. Electrochem. Soc.
,
163
(
2
), pp.
C19
C24
.
29.
Stahle
,
P.
, and
Hansen
,
E.
,
2015
, “
Phase Field Modeling of Stress Corrosion
,”
Eng. Fail. Anal.
,
47
(
B
), pp.
241
251
.
30.
Bard
,
A. J.
, and
Faulkner
,
L. R.
,
2001
,
Electrochemical Methods: Fundamentals and Applications
, 2nd ed.,
Wiley
, Hoboken, NJ.
31.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
,
2013
,
The Finite Element Method: Its Basis and Fundamentals
, 7th ed.,
Butterworth-Heinemann
, Oxford, UK.
32.
Duddu
,
R.
,
Kota
,
N.
, and
Qidwai
,
S.
,
2015
, “
An Extended Finite Element Model of Crevice and Pitting Corrosion
,”
ASME
Paper No. IMECE2015-50423.
33.
Belytschko
,
T.
, and
Black
,
T.
,
1999
, “
Elastic Crack Growth in Finite Elements With Minimal Remeshing
,”
Int. J. Numer. Methods Eng.
,
45
(
5
), pp.
601
620
.
34.
Moës
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
,
1999
, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
,
6
(
1
), pp.
131
150
.
35.
Duddu
,
R.
,
Bordas
,
S.
,
Chopp
,
D. L.
, and
Moran
,
B.
,
2008
, “
A Combined Extended Finite Element and Level Set Method for Biofilm Growth
,”
Int. J. Numer. Methods Eng.
,
74
(
5
), pp.
848
870
.
36.
Duddu
,
R.
,
Chopp
,
D. L.
, and
Moran
,
B.
,
2009
, “
A Two-Dimensional Continuum Model of Biofilm Growth Incorporating Fluid Flow and Shear Stress Based Detachment
,”
Biotechnol. Bioeng.
,
103
(
1
), pp.
92
104
.
37.
Duddu
,
R.
,
Chopp
,
D. L.
,
Voorhees
,
P. W.
, and
Moran
,
B.
,
2009
, “
Diffusional Evolution of Precipitates in Elastic Media Using the Extended Finite Element and the Level Set Methods
,”
J. Comput. Phys.
,
230
(
4
), pp.
1249
1264
.
38.
Zhao
,
X.
,
Duddu
,
R.
,
Bordas
,
S. P. A.
, and
Qu
,
J.
,
2013
, “
Effects of Elastic Strain Energy and Interfacial Stress on the Equilibrium Morphology of Misfit Particles in Heterogeneous Solids
,”
J. Mech. Phys. Solids
,
61
(
6
), pp.
1433
1445
.
39.
Sethian
,
J. A.
,
1999
,
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
,
Cambridge University Press
,
Cambridge
, UK.
40.
Chopp
,
D. L.
,
2001
, “
Some Improvements of the Fast Marching Method
,”
SIAM J. Sci. Comput.
,
23
(
1
), pp.
230
244
.
41.
Vaughan
,
B. L.
,
Smith
,
B. G.
, and
Chopp
,
D. L.
,
2006
, “
A Comparison of the Extended Finite Element Method With the Immersed Interface Method for Elliptic Equations With Discontinuous Coefficients and Singular Sources
,”
Commun. Appl. Math. Comput. Sci.
,
1
(
1
), pp.
207
228
.
42.
Li
,
Y.-H.
, and
Gregory
,
S.
,
1974
, “
Diffusion of Ions in Seawater and in Deep-Sea Sediments
,”
Geochim. Cosmochim. Acta
,
38
(5), pp.
703
714
.
43.
Kus
,
S.
, and
Mansfeld
,
F.
,
2006
, “
An Evaluation of the Electrochemical Frequency Modulation (EFM) Technique
,”
Corros. Sci.
,
48
(
4
), pp.
965
979
.
44.
Pourbaix
,
M. J. N.
,
1963
,
Atlas d'equilibres electrochimiques
,
Gauthier-Villars
,
Paris
.
45.
Pourbaix
,
M. J. N.
, and
Franklin
,
J. A.
,
1966
,
Atlas of Electrochemical Equilibria in Aqueous Solutions
,
Pergamon Press
,
Oxford, UK
.
46.
Lichtner
,
P. C.
,
1984
, “
Continuum Model for Simultaneous Chemical Reactions and Mass Transport in Hydrothermal Systems
,”
Geochim. Cosmochim. Acta
,
49
(3), pp.
779
800
.
47.
Song
,
G. L.
, and
Atrens
,
A.
,
1999
, “
Corrosion Mechanisms of Magnesium Alloys
,”
Adv. Eng. Mater.
,
1
(
1
), pp.
11
33
.
You do not currently have access to this content.