Highways consume enormous electric power and therefore contribute to heavy economic costs due to the operation of auxiliary road facilities including lighting, displays, and health-monitoring systems for tunnels and bridges, etc. We here propose a new strategy of electric power supply for highways by harvesting mechanical energy from the reciprocating deformation of road pavements. A series of wheel tracking tests are performed to demonstrate the possibility of using piezoelectric elements to transform the mechanical energy stored in pavements due to vehicular load into electricity. An analytical electromechanical model is developed to predict the correlations between electric outputs and loading conditions in the wheel tracking test. A simple scaling law is derived to show that the normalized output power depends on the normalized loading period, location, and size of the piezoelectric device. The scaling law is further extended to a practical highway application according to the analogy between the wheel tracking test and a highway in an idealized condition of periodic vehicular load. It suggests that the output power may be maximized by tuning the material and geometry of the piezoelectric device under various conditions of speed limit and vehicle spacing. The present results may provide a useful guideline for designing mechanical energy-harvesting systems in various road pavements.

References

1.
Wardlaw
,
J. L.
,
Karaman
,
I. K.
, and
Aydin
,
I.
,
2013
, “
Low-Power Circuits and Energy Harvesting for Structural Health Monitoring of Bridges
,”
IEEE Sens. J.
,
13
(
2
), pp.
709
722
.
2.
McCullagh
,
J. J.
,
Galchev
,
T.
,
Peterson
,
R. L.
,
Gordenker
,
R.
,
Zhang
,
Y.
,
Lynch
,
J.
, and
Najafi
,
K.
,
2014
, “
Long-Term Testing of a Vibration Harvesting System for the Structural Health Monitoring of Bridges
,”
Sens. Actuators A
,
217
, pp.
139
150
.
3.
Bowen
,
C. R.
,
Kim
,
H. A.
,
Weaver
,
P. M.
, and
Dunn
,
S.
,
2014
, “
Piezoelectric and Ferroelectric Materials and Structures for Energy Harvesting Applications
,”
Energy Environ. Sci.
,
7
(
1
), pp.
25
44
.
4.
Liu
,
Z. J.
,
Cheng
,
H. Y.
, and
Wu
,
J.
,
2014
, “
Mechanics of Solar Module on Structured Substrates
,”
ASME J. Appl. Mech.
,
81
(
6
), p.
064502
.
5.
Kim
,
H. S.
,
Kim
,
J. H.
, and
Kim
,
J.
,
2011
, “
A Review of Piezoelectric Energy Harvesting Based on Vibration
,”
Int. J. Precis Eng. Manuf.
,
12
(
6
), pp.
1129
1141
.
6.
Wu
,
Z.
,
Harne
,
R. L.
, and
Wang
,
K. W.
,
2014
, “
Energy Harvester Synthesis Via Coupled Linear-Bistable System With Multistable Dynamics
,”
ASME J. Appl. Mech.
,
81
(
6
), p.
061005
.
7.
Chen
,
L.
, and
Jiang
,
W.
,
2015
, “
Internal Resonance Energy Harvesting
,”
ASME J. Appl. Mech.
,
82
(
3
), p.
031004
.
8.
Boisseau
,
S.
,
Despesse
,
G.
, and
Seddik
,
B. A.
,
2013
, “
Nonlinear H-Shaped Springs to Improve Efficiency of Vibration Energy Harvesters
,”
ASME J. Appl. Mech.
,
80
(
6
), p.
061013
.
9.
Dagdeviren
,
C.
,
Yang
,
B. D.
,
Su
,
Y.
,
Tran
,
P. L.
,
Joe
,
P.
,
Anderson
,
E.
,
Xia
,
J.
,
Doraiswamy
,
V.
,
Dehdashti
,
B.
,
Feng
,
X.
,
Lu
,
B.
,
Poston
,
R.
,
Khalpey
,
Z.
,
Ghaffari
,
R.
,
Huang
,
Y.
,
Slepian
,
M. J.
, and
Rogers
,
J. A.
,
2014
, “
Conformal Piezoelectric Energy Harvesting and Storage From Motions of the Heart, Lung, and Diaphragm
,”
Proc. Natl. Acad. Sci. U.S.A.
,
111
(
5
), pp.
1927
1932
.
10.
Lu
,
B.
,
Chen
,
Y.
,
Ou
,
D.
,
Chen
,
H.
,
Diao
,
L.
,
Zhang
,
W.
,
Zheng
,
J.
,
Ma
,
W.
,
Sun
,
L.
, and
Feng
,
X.
,
2015
, “
Ultra-Flexible Piezoelectric Devices Integrated With Heart to Harvest the Biomechanical Energy
,”
Sci. Rep.
,
5
, p.
16065
.
11.
Zhang
,
Y. Y.
,
Chen
,
Y. S.
,
Lu
,
B. W.
,
Lu
,
C. F.
, and
Feng
,
X.
,
2016
, “
Electromechanical Modeling of Energy Harvesting From the Motion of Left Ventricle in Closed Chest Environment
,”
ASME J. Appl. Mech.
,
83
(
6
), p.
061007
.
12.
Ali
,
S. F.
, and
Adhikari
,
S.
,
2013
, “
Energy Harvesting Dynamic Vibration Absorbers
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041004
.
13.
McCarthy
,
J. M.
,
Watkins
,
S.
,
Deivasigamani
,
A.
, and
John
,
S. J.
,
2016
, “
Fluttering Energy Harvesters in the Wind: A Review
,”
J. Sound Vib.
,
361
, pp.
355
377
.
14.
Namli
,
O. C.
, and
Taya
,
M.
,
2011
, “
Design of Piezo-SMA Composite for Thermal Energy Harvester Under Fluctuating Temperature
,”
ASME J. Appl. Mech.
,
78
(
3
), p.
031001
.
15.
Anton
,
S. R.
, and
Sodano
,
H. A.
,
2007
, “
A Review of Power Harvesting Using Piezoelectric Materials (2003–2006)
,”
Smart Mater. Struct.
,
16
(
3
), pp.
R1
R21
.
16.
Krichen
,
S.
, and
Sharma
,
P.
,
2016
, “
Flexoelectricity: A Perspective on an Unusual Electromechanical Coupling
,”
ASME J. Appl. Mech.
,
83
(
3
), p.
030801
.
17.
Li
,
H. D.
,
Tian
,
C.
, and
Deng
,
Z. D.
,
2014
, “
Energy Harvesting From Low Frequency Applications Using Piezoelectric Materials
,”
Appl. Phys. Rev.
,
1
(
4
), p.
041301
.
18.
Zhao
,
H. D.
,
Ling
,
J. M.
, and
Yu
,
J.
,
2012
, “
A Comparative Analysis of Piezoelectric Transducers for Harvesting Energy From Asphalt Pavement
,”
J. Ceram. Soc. Jpn.
,
120
(
1404
), pp.
317
323
.
19.
Xiang
,
H. J.
,
Wang
,
J. J.
,
Shi
,
Z. F.
, and
Zhang
,
Z. W.
,
2013
, “
Theoretical Analysis of Piezoelectric Energy Harvesting From Traffic Induced Deformation of Pavements
,”
Smart Mater. Struct.
,
22
(
9
), p.
095024
.
20.
Wang
,
J. J.
,
Shi
,
Z. F.
,
Xiang
,
H. J.
, and
Song
,
G. B.
,
2015
, “
Modeling on Energy Harvesting From a Railway System Using Piezoelectric Transducers
,”
Smart Mater. Struct.
,
24
(
10
), p.
105017
.
21.
Jiang
,
X. Z.
,
Li
,
Y. C.
,
Li
,
J. C.
,
Wang
,
J.
, and
Yao
,
J.
,
2014
, “
Piezoelectric Energy Harvesting From Traffic-Induced Pavement Vibrations
,”
J. Renewable Sustainable Energy
,
6
(
4
), p.
043110
.
22.
Lim
,
C. W.
,
He
,
L. H.
, and
Soh
,
A. K.
,
2001
, “
Three-Dimensional Electromechanical Responses of a Parallel Piezoelectric Bimorph
,”
Int. J. Solids Struct.
,
38
(
16
), pp.
2833
2849
.
23.
Ding
,
H. J.
, and
Chen
,
W. Q.
,
2001
,
Three Dimensional Problems of Piezoelasticity
,
Nova Science Publishers
,
New York
.
You do not currently have access to this content.