Microcontact printing (MicroCP) is a form of soft lithography that uses the relief patterns on a master polydimethylsiloxane (PDMS) stamp to form patterns of self-assembled monolayers (SAMs) of ink on the surface of a substrate through conformal contact. Pyramidal PDMS stamps have received a lot of attention in the research community in recent years, due to the fact that the use of the pyramidal architecture has multiple advantages over traditional rectangular and cylindrical PDMS stamps. To better understand the dynamic MicroCP process involving pyramidal PDMS stamps, in this paper, numerical studies on frictionless adhesive contact between pyramidal PDMS stamps and transversely isotropic materials are presented. We use a numerical simulation method in which the adhesive interactions are represented by an interaction potential and the surface deformations are coupled by using half-space Green's functions discretized on the surface. It shows that for pyramidal PDMS stamps, the contact area increases significantly with increasing applied load, and thus, this technique is expected to provide a simple, efficient, and low-cost method to create variable two-dimensional arrays of dot chemical patterns for nanotechnology and biotechnology applications. The DMT-type and Johnson–Kendall–Roberts (JKR)-type-to-DMT-type transition regimes have been explored by conducting the simulations using smaller values of Tabor parameters.

References

References
1.
Bernard
,
A.
,
Delamarche
,
E.
,
Schmid
,
H.
,
Michel
,
B.
,
Bosshard
,
H. R.
, and
Biebuyck
,
H.
,
1998
, “
Printing Patterns of Proteins
,”
Langmuir
,
14
(
9
), pp.
2225
2229
.
2.
Bernard
,
A.
,
Renault
,
J. P.
,
Michel
,
B.
,
Bosshard
,
H. R.
, and
Delamarche
,
E.
,
2000
, “
Microcontact Printing of Proteins
,”
Adv. Mater.
,
12
(
14
), pp.
1067
1070
.
3.
Delamarche
,
E.
,
Donzel
,
C.
,
Kamounah
,
F. S.
,
Wolf
,
H.
,
Geissler
,
M.
,
Stutz
,
R.
,
Schmidt-Winkel
,
P.
,
Michel
,
B.
,
Mathieu
,
H. J.
, and
Schaumburg
,
K.
,
2003
, “
Microcontact Printing Using Poly(Dimethylsiloxane) Stamps Hydrophilized by Poly(Ethylene Oxide) Silanes
,”
Langmuir
,
19
(
21
), pp.
8749
8758
.
4.
Delamarche
,
E.
,
Schmid
,
H.
,
Michel
,
B.
, and
Biebuyck
,
H.
,
1997
, “
Stability of Molded Polydimethylsiloxane Microstructures
,”
Adv. Mater.
,
9
(
9
), pp.
741
746
.
5.
Kumar
,
A.
,
Biebuyck
,
H. A.
, and
Whitesides
,
G. M.
,
1994
, “
Patterning Self-Assembled Monolayers—Applications in Materials Science
,”
Langmuir
,
10
(
5
), pp.
1498
1511
.
6.
Kane
,
R. S.
,
Takayama
,
S.
,
Ostuni
,
E.
,
Ingber
,
D. E.
, and
Whitesides
,
G. M.
,
1999
, “
Patterning Proteins and Cells Using Soft Lithography
,”
Biomaterials
,
20
(
23–24
), pp.
2363
2376
.
7.
Thiebaud
,
P.
,
Lauer
,
L.
,
Knoll
,
W.
, and
Offenhausser
,
A.
,
2002
, “
PDMS Device for Patterned Application of Microfluids to Neuronal Cells Arranged by Microcontact Printing
,”
Biosens. Bioelectron.
,
17
(
1–2
), pp.
87
93
.
8.
Nicolau
,
D. V.
,
Taguchi
,
T.
,
Tanigawa
,
H.
, and
Yoshikawa
,
S.
,
1996
, “
Control of the Neuronal Cell Attachment by Functionality Manipulation of Diazonaphthoquinone/Novolak Photoresist Surface
,”
Biosens. Bioelectron.
,
11
(
12
), pp.
1237
1252
.
9.
Amirpour
,
M. L.
,
Ghosh
,
P.
,
Lackowski
,
W. M.
,
Crooks
,
R. M.
, and
Pishko
,
M. V.
,
2001
, “
Mammalian Cell Cultures on Micropatterned Surfaces of Weak-Acid, Polyelectrolyte Hyperbranched Thin Films on Gold
,”
Anal. Chem.
,
73
(
7
), pp.
1560
1566
.
10.
Ghosh
,
M.
,
Alves
,
C.
,
Tong
,
Z.
,
Tettey
,
K.
,
Konstantopoulos
,
K.
, and
Stebe
,
K. J.
,
2008
, “
Multifunctional Surfaces With Discrete Functionalized Regions for Biological Applications
,”
Langmuir
,
24
(
15
), pp.
8134
8142
.
11.
Didar
,
T. F.
,
Foudeh
,
A. M.
, and
Tabrizian
,
M.
,
2012
, “
Patterning Multiplex Protein Microarrays in a Single Microfluidic Channel
,”
Anal. Chem.
,
84
(
2
), pp.
1012
1018
.
12.
Hoshino
,
K.
,
Bhave
,
G.
,
Ng
,
E.
, and
Zhang
,
X. J.
,
2014
, “
Micro Patterned Quantum Dots Excitation and Imaging for Cellular Microarray Screening
,”
Sens. Actuators A
,
216
, pp.
301
307
.
13.
Huang
,
Y. G.
,
Zhou
,
W. X.
,
Hsia
,
K. J.
,
Menard
,
E.
,
Park
,
J. U.
,
Rogers
,
J. A.
, and
Alleyne
,
A. G.
,
2005
, “
Stamp Collapse in Soft Lithography
,”
Langmuir
,
21
(
17
), pp.
8058
8068
.
14.
Zhou
,
W.
,
Huang
,
Y.
,
Menard
,
E.
,
Aluru
,
N. R.
,
Rogers
,
J. A.
, and
Alleyne
,
A. G.
,
2005
, “
Mechanism for Stamp Collapse in Soft Lithography
,”
Appl. Phys. Lett.
,
87
(
25
), p.
251925
.
15.
Decré
,
M. M. J.
,
Timmermans
,
P. H. M.
,
Van Der Sluis
,
O.
, and
Schroeders
,
R.
,
2005
, “
Numerical and Experimental Study of Critical Roof Collapse Conditions in Soft Lithography
,”
Langmuir
,
21
(
17
), pp.
7971
7978
.
16.
Hui
,
C. Y.
,
Jagota
,
A.
,
Lin
,
Y. Y.
, and
Kramer
,
E. J.
,
2002
, “
Constraints on Microcontact Printing Imposed by Stamp Deformation
,”
Langmuir
,
18
(
4
), pp.
1394
1407
.
17.
Bietsch
,
A.
, and
Michel
,
B.
,
2000
, “
Conformal Contact and Pattern Stability of Stamps Used for Soft Lithography
,”
J. Appl. Phys.
,
88
(
7
), pp.
4310
4318
.
18.
Petrzelka
,
J. E.
, and
Hardt
,
D. E.
,
2012
, “
Static Load-Displacement Behavior of PDMS Microfeatures for Soft Lithography
,”
J. Micromech. Microeng.
,
22
(
7
), p.
075015
.
19.
Jagota
,
A.
,
Sharp
,
K. G.
, and
Kristunas
,
D. F.
,
2002
, “
Stamp Deformation During Microcontact Printing
,”
MRS Proc.
,
728
, p.
S8.41
.
20.
Saeidpourazar
,
R.
,
Li
,
R.
,
Li
,
Y. H.
,
Sangid
,
M. D.
,
Lu
,
C. F.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2012
, “
Laser-Driven Micro-Transfer Placement of Prefabricated Microstructures
,”
J. Microelectromech. Syst.
,
21
(
5
), pp.
1049
1058
.
21.
Li
,
R.
,
Li
,
Y.
,
Lu
,
C.
,
Song
,
J.
,
Saeidpouraza
,
R.
,
Fang
,
B.
,
Zhong
,
Y.
,
Ferreira
,
P. M.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2012
, “
Thermo-Mechanical Modeling of Laser-Driven Non-Contact Transfer Printing: Two-Dimensional Analysis
,”
Soft Matter
,
8
(
27
), pp.
7122
7127
.
22.
Filipponi
,
L.
,
Sawant
,
P. D.
,
Fulga
,
F.
, and
Nicolau
,
D. V.
,
2009
, “
Microbeads on Microposts: An Inverted Architecture for Bead Microarrays
,”
Biosens. Bioelectron.
,
24
(
7
), pp.
1850
1857
.
23.
Hong
,
J. M.
,
Ozkeskin
,
F. M.
, and
Zou
,
J.
,
2008
, “
A Micromachined Elastomeric Tip Array for Contact Printing With Variable Dot Size and Density
,”
J. Micromech. Microeng.
,
18
(
1
), p.
015003
.
24.
Schwinger
,
W.
,
Lausecker
,
E.
,
Bergmair
,
I.
,
Grydlik
,
M.
,
Fromherz
,
T.
,
Hasenfuß
,
C.
, and
Schöftner
,
R.
,
2008
, “
Fabrication of Nano-Gold Islands With μm Spacing Using 2.5 Dimensional PDMS Stamps
,”
Microelectron. Eng.
,
85
(
5–6
), pp.
1346
1349
.
25.
Filipponi
,
L.
,
Livingston
,
P.
,
Kašpar
,
O.
,
Tokárová
,
V.
, and
Nicolau
,
D. V.
,
2016
, “
Protein Patterning by Microcontact Printing Using Pyramidal PDMS Stamps
,”
Biomed. Microdevices
,
18
(
9
).
26.
Sharp
,
K. G.
,
Blackman
,
G. S.
,
Glassmaker
,
N. J.
,
Jagota
,
A.
, and
Hui
,
C. Y.
,
2004
, “
Effect of Stamp Deformation on the Quality of Microcontact Printing: Theory and Experiment
,”
Langmuir
,
20
(
15
), pp.
6430
6438
.
27.
Gao
,
X.-L.
, and
Mao
,
C. L.
,
2013
, “
Solution of the Contact Problem of a Rigid Conical Frustum Indenting a Transversely Isotropic Elastic Half-Space
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041007
.
28.
Tang
,
T.
,
Hui
,
C. Y.
,
Jagota
,
A.
, and
Chaudhury
,
M. K.
,
2006
, “
Thermal Fluctuations Limit the Adhesive Strength of Compliant Solids
,”
J. Adhes.
,
82
(
7
), pp.
671
696
.
29.
Derjaguin
,
B. V.
,
1934
, “
Untersuchungen über die Reibung und Adhäsion, IV
,”
Theor. Anhaftens Kleiner Teilchen Kolloid Z
,
69
(
2
), pp.
155
164
.
30.
Greenwood
,
J. A.
,
1997
, “
Adhesion of Elastic Spheres
,”
Proc. R. Soc. London Ser. A
,
453
(
1961
), pp.
1277
1297
.
31.
Feng
,
J. Q.
,
2000
, “
Contact Behavior of Spherical Elastic Particles: A Computational Study of Particle Adhesion and Deformations
,”
Colloids Surf. A
,
172
(1–3), pp.
175
198
.
32.
Wu
,
J. J.
,
2006
, “
The Numerical Analyses on Elliptical Adhesive Contact
,”
J. Phys. D
,
39
(
9
), pp.
1899
1907
.
33.
Jin
,
C.
,
2016
, “
Numerical Investigation of Indentation Tests on a Transversely Isotropic Elastic Material by Power-Law Shaped Axisymmetric Indenters
,”
J. Adhes. Sci. Technol.
,
30
(
11
), pp.
1223
1242
.
34.
Tabor
,
D.
,
1977
, “
Surface Forces and Surface Interactions
,”
J. Colloid Interface Sci.
,
58
(
1
), pp.
2
3
.
35.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
, Cambridge, UK.
36.
Fafard
,
M.
, and
Massicotte
,
B.
,
1993
, “
Geometrical Interpretation of the Arc-Length Method
,”
Comput. Struct.
,
46
(
4
), pp.
603
615
.
37.
Lotters
,
J. C.
,
Olthuis
,
W.
,
Veltink
,
P. H.
, and
Bergveld
,
P.
,
1997
, “
The Mechanical Properties of the Rubber Elastic Polymer Polydimethylsiloxane for Sensor Applications
,”
J. Micromech. Microeng.
,
7
(
3
), pp.
145
147
.
38.
Tafazzoli
,
A.
,
Pawashe
,
C.
, and
Sitti
,
M.
,
2006
, “
Force-Controlled Microcontact Printing Using Microassembled Particle Templates
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Orlando, FL, May 15–19, pp.
263
268
.
39.
Jin
,
C.
,
Khare
,
K.
,
Vajpayee
,
S.
,
Yang
,
S.
,
Jagota
,
A.
, and
Hui
,
C. Y.
,
2011
, “
Adhesive Contact Between a Rippled Elastic Surface and a Rigid Spherical Indenter: From Partial to Full Contact
,”
Soft Matter
,
7
(
22
), pp.
10728
10736
.
40.
Kohn
,
J. C.
, and
Ebenstein
,
D. M.
,
2013
, “
Eliminating Adhesion Errors in Nanoindentation of Compliant Polymers and Hydrogels
,”
J. Mech. Behav. Biomed. Mater.
,
20
, pp.
316
326
.
41.
Wang
,
Z.
,
Volinsky
,
A. A.
, and
Gallant
,
N. D.
,
2015
, “
Nanoindentation Study of Polydimethylsiloxane Elastic Modulus Using Berkovich and Flat Punch Tips
,”
J. Appl. Polym. Sci.
,
132
(
5
), p.
41384
.
42.
Kaufman
,
J. D.
, and
Klapperich
,
C. M.
,
2009
, “
Surface Detection Errors Cause Overestimation of the Modulus in Nanoindentation on Soft Materials
,”
J. Mech. Behav. Biomed. Mater.
,
2
(
4
), pp.
312
317
.
43.
Cao
,
Y. F.
,
Yang
,
D. H.
, and
Soboyejoy
,
W.
,
2005
, “
Nanoindentation Method for Determining the Initial Contact and Adhesion Characteristics of Soft Polydimethylsiloxane
,”
J. Mater. Res.
,
20
(08), pp.
2004
2011
.
44.
Ebenstein
,
D. M.
,
2011
, “
Nano-JKR Force Curve Method Overcomes Challenges of Surface Detection and Adhesion for Nanoindentation of a Compliant Polymer in Air and Water
,”
J. Mater. Res.
,
26
(08), pp.
1026
1035
.
45.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Y. P.
,
1975
, “
Effect of Contact Deformations on the Adhesion of Particles
,”
J. Colloid Interface Sci.
,
53
(
2
), pp.
314
326
.
46.
Seol
,
M. L.
,
Lee
,
S. H.
,
Han
,
J. W.
,
Kim
,
D.
,
Cho
,
G. H.
, and
Choi
,
Y. K.
,
2015
, “
Impact of Contact Pressure on Output Voltage of Triboelectric Nanogenerator Based on Deformation of Interfacial Structures
,”
Nano Energy
,
17
, pp.
63
71
.
47.
Fan
,
F. R.
,
Tian
,
Z. Q.
, and
Wang
,
Z. L.
,
2012
, “
Flexible Triboelectric Generator
,”
Nano Energy
,
1
(
2
), pp.
328
334
.
48.
Yang
,
Y.
,
Zhu
,
G.
,
Zhang
,
H.
,
Chen
,
J.
,
Zhong
,
X.
,
Lin
,
Z.-H.
,
Su
,
Y.
,
Bai
,
P.
,
Wen
,
X.
, and
Wang
,
Z. L.
,
2013
, “
Triboelectric Nanogenerator for Harvesting Wind Energy and as Self-Powered Wind Vector Sensor System
,”
ACS Nano
,
7
(
10
), pp.
9461
9468
.
49.
Fan
,
F. R.
,
Lin
,
L.
,
Zhu
,
G.
,
Wu
,
W.
,
Zhang
,
R.
, and
Wang
,
Z. L.
,
2012
, “
Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films
,”
Nano Lett.
,
12
(
6
), pp.
3109
3114
.
50.
Fischer-Cripps
,
A. C.
,
2002
,
Nanoindentation
,
Springer
,
New York
.
51.
Giannakopoulos
,
A. E.
,
2006
, “
Elastic and Viscoelastic Indentation of Flat Surfaces by Pyramid Indentors
,”
J. Mech. Phys. Solids
,
54
(
7
), pp.
1305
1332
.
52.
Jagota
,
A.
, and
Argento
,
C.
,
1997
, “
An Intersurface Stress Tensor
,”
J. Colloid Interface Sci.
,
191
(
2
), pp.
326
336
.
53.
Yu
,
N.
, and
Polycarpou
,
A.
,
2004
, “
Adhesive Contact Based on the Lennard–Jones Potential: A Correction to the Value of the Equilibrium Distance as Used in the Potential
,”
J. Colloid Interface Sci.
,
278
(
2
), pp.
428
435
.
You do not currently have access to this content.