Recently, triple shape memory polymers (TSMPs) have been discovered; these materials can be programmed to switch between three distinct shapes. Previously, we introduced a model to describe the mechanical behavior of TSMPs; however, the earlier study was limited in scope to simple cases of uniaxial deformation. In this work, we build upon our prior work, and develop robust numerical methods and constitutive equations to model complex mechanical behavior of TSMPs in inhomogeneous deformations and loading conditions using a framework based on the theory of multiple natural configurations. The model has been calibrated to uniaxial experiments. In addition, the model has been implemented as a user material subroutine (UMAT) in the finite element package abaqus. To demonstrate the applicability of the developed constitutive model, we have numerically simulated two cases of three-dimensional bodies undergoing triple-shape cycles; triple-shape recovery response of a complex TSMP geometry and the triple-shape recovery response of a stent when it is inserted in an artery modeled as a compliant elastomeric tube.

References

References
1.
Irie
,
M.
,
1998
, “
Shape Memory Polymers
,”
Shape Memory Materials
,
Cambridge University Press
,
Cambridge, UK
, pp.
203
219
.
2.
Lendlein
,
A.
, and
Kelch
,
S.
,
2002
, “
Shape-Memory Polymers
,”
Angew. Chem., Int. Ed.
,
41
(
12
), pp.
2034
2057
.
3.
Lendlein
,
A.
,
Schmidt
,
A. M.
, and
Langer
,
R.
,
2001
, “
AB-Polymer Networks Based on Oligo(ε-Caprolactone) Segments Showing Shape-Menory Properties
,”
Proc. Natl. Acad. Sci. U.S.A.
,
98
(
3
), pp.
842
847
.
4.
Lendlein
,
A.
, and
Sauter
,
T.
,
2013
, “
Shape-Memory Effect in Polymers
,”
Macromol. Chem. Phys.
,
214
(
11
), pp.
1175
1177
.
5.
Zhao
,
Q.
,
Behl
,
M.
, and
Lendlein
,
A.
,
2013
, “
Shape-Memory Polymers With Multiple Transitions: Complex Actively Moving Polymers
,”
Soft Matter
,
9
(
6
), pp.
1744
1755
.
6.
Lendlein
,
A.
, and
Langer
,
R.
,
2002
, “
Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications
,”
Science
,
296
(
5573
), pp.
1673
1676
.
7.
Serrano
,
M. C.
, and
Ameer
,
G. A.
,
2012
, “
Recent Insights Into the Biomedical Applications of Shape-Memory Polymers
,”
Macromol. Biosci.
,
12
(
9
), pp.
1156
1171
.
8.
Sisson
,
A. L.
, and
Lendlein
,
A.
,
2012
, “
Advances in Actively Moving Polymers
,”
Macromol. Mater. Eng.
,
297
(
12
), pp.
1135
1137
.
9.
Monkman
,
G. J.
,
2000
, “
Advances in Shape Memory Polymer Actuation
,”
Mechatronics
,
10
(
4
), pp.
489
498
.
10.
Poilane
,
C.
,
Delobelle
,
P.
,
Lexcellent
,
C.
,
Hayashi
,
S.
, and
Tobushi
,
H.
,
2000
, “
Analysis of the Mechanical Behavior of Shape Memory Polymer Membranes by Nanoindentation, Bulging and Point Membrane Deflection Tests
,”
Thin Solid Films
,
379
(
1–2
), pp.
156
165
.
11.
Sodhi
,
J. S.
, and
Rao
,
I. J.
,
2010
, “
Modeling the Mechanics of Light Activated Shape Memory Polymers
,”
Int. J. Eng. Sci.
,
48
(
11
), pp.
1576
1589
.
12.
Sun
,
L.
,
Huang
,
W. M.
,
Ding
,
Z.
,
Zhao
,
Y.
,
Wang
,
C. C.
,
Purnawali
,
H.
, and
Tang
,
C.
,
2012
, “
Stimulus-Responsive Shape Memory Materials: A Review
,”
Mater. Des.
,
33
(
1
), pp.
577
640
.
13.
Tey
,
S. J.
,
Huang
,
W. M.
, and
Sokolowski
,
W. M.
,
2001
, “
Influence of Long-Term Storage in Cold Hibernation on Strain Recovery and Recovery Stress of Polyurethane Shape Memory Polymer Foam
,”
Smart Mater. Struct.
,
10
(
2
), pp.
321
325
.
14.
Xie
,
T.
,
2011
, “
Recent Advances in Polymer Shape Memory
,”
Polymer
,
52
(
22
), pp.
4985
5000
.
15.
Behl
,
M.
, and
Lendlein
,
A.
,
2012
, “
Triple-Shape Polymers
,”
J. Mater. Chem.
,
20
(
17
), pp.
3335
3345
.
16.
Bellin
,
I.
,
Kelch
,
S.
,
Langer
,
R.
, and
Lendlein
,
A.
,
2006
, “
Polymeric Triple-Shape Materials
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
48
), pp.
18043
18047
.
17.
Ge
,
Q.
,
Luo
,
X.
,
Iversen
,
C. B.
,
Mather
,
P. T.
,
Dunn
,
M. L.
, and
Qi
,
H. J.
,
2013
, “
Mechanisms of Triple-Shape Polymeric Composites Due to Dual Thermal Transitions
,”
Soft Matter
,
9
(
7
), pp.
2212
2223
.
18.
Ge
,
Q.
,
Luo
,
X.
,
Iversen
,
C. B.
,
Nejad
,
H. B.
,
Mather
,
P. T.
,
Dunn
,
M. L.
, and
Qi
,
H. J.
,
2014
, “
A Finite Deformation Thermomechanical Constitutive Model for Triple Shape Polymeric Composites Based on Dual Thermal Transitions
,”
Int. J. Solids Struct.
,
51
(
15–16
), pp.
2777
2790
.
19.
Long
,
K. N.
,
Scott
,
T. F.
,
Qi
,
H. J.
,
Bowman
,
C. N.
, and
Dunn
,
M. L.
,
2009
, “
Photomechanics of Light-Activated Polymers
,”
J. Mech. Phys. Solids
,
57
(
7
), pp.
1103
1121
.
20.
Mather
,
P. T.
,
Luo
,
X.
, and
Rousseau
,
I. A.
,
2009
, “
Shape Memory Polymer Research
,”
Annu. Rev. Mater. Res.
,
39
(
1
), pp.
445
471
.
21.
Zotzmann
,
J.
,
Behl
,
M.
,
Feng
,
Y.
, and
Lendlein
,
A.
,
2010
, “
Copolymer Networks Based on Poly(ω-Pentadecalactone) and Poly(ε-Caprolactone)Segments as a Versatile Triple-Shape Polymer System
,”
Adv. Funct. Mater.
,
20
(
20
), pp.
3583
3594
.
22.
Zotzmann
,
J.
,
Behl
,
M.
,
Hofmann
,
D.
, and
Lendlein
,
A.
,
2010
, “
Reversible Triple-Shape Effect of Polymer Networks Containing Polypentadecalactone- and Poly(ε-Caprolactone)-Segments
,”
Adv. Mater.
,
22
(
31
), pp.
3424
3429
.
23.
Zotzmann
,
J.
,
Behl
,
M.
, and
Lendlein
,
A.
,
2011
, “
The Influence of Programming Conditions on the Triple-Shape Effect of Copolymer Networks With Poly(ω-Pentadecalactone) and Poly(ε- Caprolactone) as Switching Segments
,”
Macromol. Symp.
,
309–310
(
1
), pp.
147
153
.
24.
Behl
,
M.
,
Bellin
,
I.
,
Kelch
,
S.
,
Wagermaier
,
W.
, and
Lendlein
,
A.
,
2009
, “
Dual and Triple Shape Capability of AB Polymer Networks Based on Poly(ε-Caprolactone)Dimethacrylates
,” MRS Fall Meeting, Symposium HH, Advances in Material Design for Regenerative Medicine, Drug Delivery, and Targeting/Imaging, Boston, MA, Dec. 1–5.
25.
Behl
,
M.
,
Bellin
,
I.
,
Kelch
,
S.
,
Wagermaier
,
W.
, and
Lendlein
,
A.
,
2009
, “
One-Step Process for Creating Triple-Shape Capability of AB Polymer Networks
,”
Adv. Funct. Mater.
,
19
(
1
), pp.
102
108
.
26.
Jeong
,
H. M.
,
Kim
,
B. K.
, and
Choi
,
Y. J.
,
2000
, “
Synthesis and Properties of Thermotropic Liquid Crystalline Polyurethane Elastomers
,”
Polymer
,
41
(
5
), pp.
1849
1855
.
27.
Li
,
F.
,
Zhang
,
X.
,
Hou
,
J.
,
Xu
,
M.
,
Luo
,
X.
,
Ma
,
D.
, and
Kim
,
B. K.
,
1997
, “
Studies on Thermally Stimulated Shape Memory Effect of Segmented Polyurethanes
,”
J. Appl. Polym. Sci.
,
64
(
8
), pp.
1511
1516
.
28.
Reyntjens
,
W. G.
,
Du Prez
,
F. E.
, and
Goethals
,
E. J.
,
1999
, “
Polymer Networks Containing Crystallizable Poly(Octadecyl Vinyl Ether) Segments for Shape-Memory Materials
,”
Macromol. Rapid Commun.
,
20
(
5
), pp.
251
255
.
29.
Lendlein
,
A.
,
2010
,
Advances in Polymer Science
(Shape-Memory Polymers), Vol.
226
,
Springer
,
New York
.
30.
Lendlein
,
A.
,
Behl
,
M.
,
Hiebl
,
B.
, and
Wischke
,
C.
,
2010
, “
Shape-Memory Polymers as a Technology Platform for Biomedical Applications
,”
Expert Rev. Med. Devices
,
7
(
3
), pp.
357
379
.
31.
Leng
,
J.
,
Lan
,
X.
,
Liu
,
Y.
, and
Du
,
S.
,
2011
, “
Shape-Memory Polymers and Their Composites: Stimulus Methods and Applications
,”
Prog. Mater. Sci.
,
56
(
7
), pp.
1077
1135
.
32.
Hu
,
J.
,
Meng
,
H.
,
Li
,
G.
, and
Ibekwe
,
S. I.
,
2012
, “
A Review of Stimuli-Responsive Polymers for Smart Textile Applications
,”
Smart Mater. Struct.
,
21
(
5
), pp.
1720
1763
.
33.
Hu
,
J.
,
Zhu
,
Y.
,
Huang
,
H.
, and
Lu
,
J.
,
2012
, “
Recent Advances in Shape-Memory Polymers: Structure, Mechanism, Functionality, Modeling and Applications
,”
Prog. Polym. Sci.
,
37
(
12
), pp.
1720
1763
.
34.
Heuchel
,
M.
,
Sauter
,
T.
,
Kratz
,
K.
, and
Lendlein
,
A.
,
2013
, “
Thermally Induced Shape-Memory Effects in Polymers: Quantification and Related Modeling Approaches
,”
J. Polym. Sci., Part B: Polym. Phys.
,
51
(
8
), pp.
621
637
.
35.
Srivastava
,
V.
,
Chester
,
S. A.
, and
Anand
,
L.
,
2010
, “
Thermally Actuated Shape-Memory Polymers: Experiments, Theory, and Numerical Simulations
,”
J. Mech. Phys. Solids
,
58
(
8
), pp.
1100
1124
.
36.
Nguyen
,
T. D.
,
2013
, “
Modeling Shape-Memory Behavior of Polymers
,”
Polym. Rev.
,
53
(
1
), pp.
130
152
.
37.
Nguyen
,
T. D.
,
Qi
,
H. J.
,
Castro
,
F.
, and
Long
,
K. N.
,
2008
, “
A Thermoviscoelastic Model for Amorphous Shape Memory Polymers: Incorporating Structural and Stress Relaxation
,”
J. Mech. Phys. Solids
,
56
(
9
), pp.
2792
2814
.
38.
Nguyen
,
T. D.
,
Yakacki
,
C. M.
,
Brahmbhatt
,
P. D.
, and
Chambers
,
M. L.
,
2010
, “
Modeling the Relaxation Mechanisms of Amorphous Shape Memory Polymers
,”
Adv. Mater.
,
22
(
31
), pp.
3411
3423
.
39.
Qi
,
H. J.
,
Nguyen
,
T. D.
,
Castro
,
F.
,
Yakacki
,
C. M.
, and
Shandas
,
R.
,
2008
, “
Finite Deformation Thermo-Mechanical Behavior of Thermally Induced Shape Memory Polymers
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
1730
1751
.
40.
Westbrook
,
K. K.
,
Kao
,
P. H.
,
Castro
,
F.
,
Ding
,
Y.
, and
Qi
,
H. J.
,
2011
, “
A 3D Finite Deformation Constitutive Model for Amorphous Shape Memory Polymers: A Multi-Branch Modeling Approach for Nonequilibrium Relaxation Processes
,”
Mech. Mater.
,
43
(
12
), pp.
853
869
.
41.
Xiao
,
R.
,
Guo
,
J.
, and
Nguyen
,
T. D.
,
2015
, “
Modeling the Multiple Shape Memory Effect and Temperature Memory Effect in Amorphous Polymers
,”
RSC Adv.
,
5
(
1
), pp.
416
423
.
42.
Yakacki
,
C. M.
,
Nguyen
,
T. D.
,
Likos
,
R.
,
Lamell
,
R.
,
Guigou
,
D.
, and
Gall
,
K.
,
2011
, “
Impact of Shape-Memory Programming on Mechanically-Driven Recovery in Polymers
,”
Polymer
,
52
(
21
), pp.
4947
4954
.
43.
Yakacki
,
C. M.
,
Shandas
,
R.
,
Lanning
,
C.
,
Rech
,
B.
,
Eckstein
,
A.
, and
Gall
,
K.
,
2007
, “
Unconstrained Recovery Characterization of Shape-Memory Polymer Networks for Cardiovascular Applications
,”
Biomaterials
,
28
(
14
), pp.
2255
2263
.
44.
Xiao
,
R.
, and
Nguyen
,
T. D.
,
2013
, “
Modeling the Solvent-Induced Shape-Memory Behavior of Glassy Polymers
,”
Soft Matter
,
9
(
39
), pp.
9455
9464
.
45.
Long
,
K. N.
,
Dunn
,
M. L.
, and
Qi
,
H. J.
,
2010
, “
Mechanics of Soft Active Materials With Phase Evolution
,”
Int. J. Plast.
,
26
(
4
), pp.
603
616
.
46.
Long
,
R.
,
Qi
,
H. J.
, and
Dunn
,
M. L.
,
2013
, “
Thermodynamics and Mechanics of Photochemically Reacting Polymers
,”
J. Mech. Phys. Solids
,
61
(
11
), pp.
2212
2239
.
47.
Rao
,
I. J.
,
2002
, “
Constitutive Modeling of Crystallizable Shape Memory Polymers
,” 60th Society of Plastics Engineers Annual Technical Conference (ANTEC 2002), San Francisco, CA, May 5–9.
48.
Rao
,
I. J.
,
2003
, “
Effect of the Rate of Deformation on the Crystallization Behavior of Polymers
,”
Int. J. Non-Linear Mech.
,
38
(
5
), pp.
663
676
.
49.
Rao
,
I. J.
,
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
,
2003
, “
Biological Growth and Remodeling: A Uniaxial Example With Possible Application to Tendons and Ligaments
,”
CMES–Comput. Model. Eng. Sci.
,
4
(
4
), pp.
439
455
.
50.
Rao
,
I. J.
, and
Rajagopal
,
K. R.
,
2000
, “
Phenomenological Modeling of Polymer Crystallization Using the Notion of Multiple Natural Configurations
,”
Interfaces Free Boundaries
,
2
(
1
), pp.
73
94
.
51.
Rao
,
I. J.
, and
Rajagopal
,
K. R.
,
2001
, “
Study of Strain-Induced Crystallization of Polymers
,”
Int. J. Solids Struct.
,
38
(
6–7
), pp.
1149
1167
.
52.
Rao
,
I. J.
, and
Rajagopal
,
K. R.
,
2002
, “
A Thermodynamic Framework for the Study of Crystallization in Polymers
,”
Z. Angew. Math. Phys.
,
53
(
3
), pp.
365
406
.
53.
Rao
,
I. J.
, and
Rajagopal
,
K. R.
,
2004
, “
On the Modeling of Quiescent Crystallization of Polymer Melts
,”
Polym. Eng. Sci.
,
44
(
1
), pp.
123
130
.
54.
Rao
,
I. J.
, and
Rajagopal
,
K. R.
,
2005
, “
Simulation of the Film Blowing Process for Semicrystalline Polymers
,”
Mech. Adv. Mater. Struct.
,
12
(
2
), pp.
129
146
.
55.
Rajagopal
,
K. R.
, and
Wineman
,
A. S.
,
1992
, “
A Constitutive Equation for Nonlinear Solids Which Undergo Deformation Induced Microstructural Changes
,”
Int. J. Plast.
,
8
(
4
), pp.
385
395
.
56.
Rajagopal
,
K. R.
, and
Tao
,
L.
,
1995
,
Mechanics of Mixtures
,
World Scientific Publishing
,
Singapore
.
57.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
,
1998
, “
Mechanics of the Inelastic Behavior of Materials—Part 1, Theoretical Underpinnings
,”
Int. J. Plast.
,
14
(
10–11
), pp.
945
967
.
58.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
,
1999
, “
On the Thermomechanics of Shape Memory Wires
,”
Z. Angew. Math. Phys.
,
50
(
3
), pp.
459
496
.
59.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
,
2000
, “
A Thermodynamic Frame Work for Rate Type Fluid Models
,”
J. Non-Newtonian Fluid Mech.
,
88
(
3
), pp.
207
227
.
60.
Barot
,
G.
, and
Rao
,
I. J.
,
2006
, “
Constitutive Modeling of the Mechanics Associated With Crystallizable Shape Memory Polymers
,”
Z. Angew. Math. Phys.
,
57
(
4
), pp.
652
681
.
61.
Barot
,
G.
,
Rao
,
I. J.
, and
Rajagopal
,
K. R.
,
2008
, “
A Thermodynamic Framework for the Modeling of Crystallizable Shape Memory Polymers
,”
Int. J. Eng. Sci.
,
46
(
4
), pp.
325
351
.
62.
Mitchell
,
G. R.
,
Davis
,
F. J.
, and
Guo
,
W.
,
1993
, “
Strain-Induced Transitions in Liquid-Crystal Elastomers
,”
Phys. Rev. Lett.
,
71
(
18
), pp.
2947
2950
.
63.
Wang
,
X. M.
,
Xu
,
B. X.
, and
Yue
,
Z. F.
,
2008
, “
Micromechanical Modelling of the Effect of Plastic Deformation on the Mechanical Behaviour in Pseudoelastic Shape Memory Alloys
,”
Int. J. Plast.
,
24
(
8
), pp.
1307
1332
.
64.
Moon
,
S.
,
Cui
,
F.
, and
Rao
,
I. J.
,
2015
, “
Constitutive Modeling of the Mechanics Associated With Triple Shape Memory Polymers
,”
Int. J. Eng. Sci.
,
96
, pp.
86
110
.
65.
Ogden
,
R. W.
,
1984
,
Non-Linear Elastic Deformations
,
Ellis Horwood Ltd
.,
Chichester, UK
.
66.
Treolar
,
L. R. G.
,
1975
,
The Physics of Rubber Elasticity
,
Oxford University Press
,
Oxford, UK
.
67.
Atkin
,
R. J.
, and
Craine
,
R. E.
,
1976
, “
Continuum Theory of Mixtures: Basic Theory and Historical Development
,”
Q. J. Mech. Appl. Math.
,
29
(
2
), pp.
209
244
.
68.
Bowen
,
R. M.
,
1976
, “
Theory of Mixtures
,”
Continuum Physics
, Vol. III, Academic Press, New York, pp. 1–127.
69.
Truesdell
,
C.
,
1957
, “
Sulle Basi Della Thermomeccanica
,”
Rend. Lincei
,
22
(
8
), pp.
33
38
.
70.
Mark
,
J. E.
,
1979
, “
Interpretation of Polymer Properties in Terms of Chain Conformations and Spatial Configurations
,”
Acc. Chem. Res.
,
12
(
2
), pp.
49
55
.
71.
Mark
,
J. E.
, and
Erman
,
B.
,
1988
,
Rubberlike Elasticity. A Molecular Primer
,
Wiley-Interscience
,
New York
.
72.
Baer
,
G.
,
Wilson
,
T. S.
,
Matthews
,
D. L.
, and
Maitland
,
D. J.
,
2007
, “
Shape-Memory Behavior of Thermally Stimulated Polyurethane for Medical Applications
,”
J. Appl. Polym. Sci.
,
103
(
6
), pp.
3882
3892
.
73.
Baer
,
G. M.
,
Iv
,
W. S.
,
Wilson
,
T. S.
,
Benett
,
W. J.
,
Matthews
,
D. L.
,
Hartman
,
J.
, and
Maitland
,
D. J.
,
2007
, “
Fabrication and In Vitro Deployment of a Laser-Activated Shape Memory Polymer Vascular Stent
,”
BioMed. Eng. Online
,
6
, epub.
You do not currently have access to this content.