Inspired by natural plants, thermoresponding hydrogel (TRH) structures have been designed to trigger mechanical instability with fast actuation. Tough Ca-alginate/poly(N-isopropylacrylamide) (PNIPAM) hydrogel has been synthesized by the hybrid of physically cross-linked alginate and covalently cross-linked PNIPAM. The tough Ca-alginate/PNIPAM hydrogel exhibits 30 kPa of elastic modulus, 280 J/m2 of fracture energies, and fivefold of uniaxial stretch. A multilayered structure made of (Ca-alginate/PNIPAM)/(Ca-alginate/poly (acrylamide)) hydrogels demonstrate fast actuation induced by mechanical instability. A finite-element simulation model is developed to investigate the deformation and to guide the structural design of the hydrogels. The instability-triggering mechanism can enhance the actuation performances of hydrogel structures in applications, such as drug delivery, microfluid control system, and soft biomimetic robotics.

References

References
1.
Kempaiah
,
R.
, and
Nie
,
Z.
,
2014
, “
From Nature to Synthetic Systems: Shape Transformation in Soft Materials
,”
J. Mater. Chem. B
,
2
(
17
), pp.
2357
2368
.
2.
Ionov
,
L.
,
2013
, “
Biomimetic Hydrogel-Based Actuating Systems
,”
Adv. Funct. Mater.
,
23
(
36
), pp.
4555
4570
.
3.
Stuart
,
M. A.
,
Huck
,
W. T.
,
Genzer
,
J.
,
Muller
,
M.
,
Ober
,
C.
,
Stamm
,
M.
,
Sukhorukov
,
G. B.
,
Szleifer
,
I.
,
Tsukruk
,
V. V.
,
Urban
,
M.
,
Winnik
,
F.
,
Zauscher
,
S.
,
Luzinov
,
I.
, and
Minko
,
S.
,
2010
, “
Emerging Applications of Stimuli-Responsive Polymer Materials
,”
Nat. Mater.
,
9
(
2
), pp.
101
113
.
4.
Zhuang
,
J.
,
Gordon
,
M. R.
,
Ventura
,
J.
,
Li
,
L.
, and
Thayumanavan
,
S.
,
2013
, “
Multi-Stimuli Responsive Macromolecules and Their Assemblies
,”
Chem. Soc. Rev.
,
42
(
17
), pp.
7421
7435
.
5.
Zhao
,
X.
,
Kim
,
J.
,
Cezar
,
C. A.
,
Huebsch
,
N.
,
Lee
,
K.
,
Bouhadir
,
K.
, and
Mooney
,
D. J.
,
2011
, “
Active Scaffolds for On-Demand Drug and Cell Delivery
,”
Proc. Natl. Acad. Sci. U.S.A.
,
108
(
1
), pp.
67
72
.
6.
Beebe
,
D. J.
,
Moore
,
J. S.
,
Bauer
,
J. M.
,
Yu
,
Q.
,
Liu
,
R. H.
,
Devadoss
,
C.
, and
Jo
,
B. H.
,
2000
, “
Functional Hydrogel Structures for Autonomous Flow Control Inside Microfluidic Channels
,”
Nature
,
404
(
6778
), pp.
588
590
.
7.
Tay
,
C. Y.
,
Wu
,
Y.-L.
,
Cai
,
P.
,
Tan
,
N. S.
,
Venkatraman
,
S. S.
,
Chen
,
X.
, and
Tan
,
L. P.
,
2015
, “
Bio-Inspired Micropatterned Hydrogel to Direct and Deconstruct Hierarchical Processing of Geometry-Force Signals by Human Mesenchymal Stem Cells During Smooth Muscle Cell Differentiation
,”
NPG Asia Mater.
,
7
(
7
), p.
199
.
8.
Vunjak-Novakovic
,
G.
, and
Scadden
,
D. T.
,
2011
, “
Biomimetic Platforms for Human Stem Cell Research
,”
Cell Stem Cell
,
8
(
3
), pp.
252
261
.
9.
Ilievski
,
F.
,
Mazzeo
,
A. D.
,
Shepherd
,
R. F.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2011
, “
Soft Robotics for Chemists
,”
Angew. Chem.
,
50
(
8
), pp.
1890
1895
.
10.
Morales
,
D.
,
Palleau
,
E.
,
Dickey
,
M. D.
, and
Velev
,
O. D.
,
2014
, “
Electro-Actuated Hydrogel Walkers With Dual Responsive Legs
,”
Soft Matter
,
10
(
9
), pp.
1337
1348
.
11.
Maeda
,
S.
,
Hara
,
Y.
,
Sakai
,
T.
,
Yoshida
,
R.
, and
Hashimoto
,
S.
,
2007
, “
Self-Walking Gel
,”
Adv. Mater.
,
19
(
21
), pp.
3480
3484
.
12.
Cai
,
S.
, and
Suo
,
Z.
,
2011
, “
Mechanics and Chemical Thermodynamics of Phase Transition in Temperature-Sensitive Hydrogels
,”
J. Mech. Phys. Solids
,
59
(
11
), pp.
2259
2278
.
13.
Hong
,
W.
,
Zhao
,
X.
,
Zhou
,
J.
, and
Suo
,
Z.
,
2008
, “
A Theory of Coupled Diffusion and Large Deformation in Polymeric Gels
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
1779
1793
.
14.
Hong
,
W.
,
Liu
,
Z.
, and
Suo
,
Z.
,
2009
, “
Inhomogeneous Swelling of a Gel in Equilibrium With a Solvent and Mechanical Load
,”
Int. J. Solids Struct.
,
46
(
17
), pp.
3282
3289
.
15.
Takashima
,
Y.
,
Hatanaka
,
S.
,
Otsubo
,
M.
,
Nakahata
,
M.
,
Kakuta
,
T.
,
Hashidzume
,
A.
,
Yamaguchi
,
H.
, and
Harada
,
A.
,
2012
, “
Expansion-Contraction of Photoresponsive Artificial Muscle Regulated by Host-Guest Interactions
,”
Nat. Commun.
,
3
, p.
1270
.
16.
McKee
,
J. R.
,
Hietala
,
S.
,
Seitsonen
,
J.
,
Laine
,
J.
,
Kontturi
,
E.
, and
Ikkala
,
O.
,
2014
, “
Thermoresponsive Nanocellulose Hydrogels With Tunable Mechanical Properties
,”
ACS Macro Lett.
,
3
(
3
), pp.
266
270
.
17.
Xia
,
L. W.
,
Xie
,
R.
,
Ju
,
X. J.
,
Wang
,
W.
,
Chen
,
Q.
, and
Chu
,
L. Y.
,
2013
, “
Nano-Structured Smart Hydrogels With Rapid Response and High Elasticity
,”
Nat. Commun.
,
4
, p.
2226
.
18.
Tanaka
,
T.
,
Fillmore
,
D.
,
Sun
,
S.-T.
,
Nishio
,
I.
,
Swislow
,
G.
, and
Shah
,
A.
,
1980
, “
Phase Transitions in Ionic Gels
,”
Phys. Rev. Lett.
,
45
(
20
), pp.
1636
1639
.
19.
Suzuki
,
A.
, and
Tanaka
,
T.
,
1990
, “
Phase-Transition in Polymer Gels Induced by Visible-Light
,”
Nature
,
346
(
6282
), pp.
345
347
.
20.
Bhattacharya
,
S.
,
Eckert
,
F.
,
Boyko
,
V.
, and
Pich
,
A.
,
2007
, “
Temperature-, pH-, and Magnetic-Field-Sensitive Hybrid Microgels
,”
Small
,
3
(
4
), pp.
650
657
.
21.
King
,
D. R.
,
Sun
,
T. L.
,
Huang
,
Y.
,
Kurokawa
,
T.
,
Nonoyama
,
T.
,
Crosby
,
A. J.
, and
Gong
,
J. P.
,
2015
, “
Extremely Tough Composites From Fabric Reinforced Polyampholyte Hydrogels
,”
Mater. Horiz.
,
2
(
6
), pp.
584
591
.
22.
Ghoorchian
,
A.
,
Simon
,
J. R.
,
Bharti
,
B.
,
Han
,
W.
,
Zhao
,
X.
,
Chilkoti
,
A.
, and
López
,
G. P.
,
2015
, “
Bioinspired Reversibly Cross-Linked Hydrogels Comprising Polypeptide Micelles Exhibit Enhanced Mechanical Properties
,”
Adv. Funct. Mater.
,
25
(
21
), pp.
3122
3130
.
23.
Luo
,
F.
,
Sun
,
T. L.
,
Nakajima
,
T.
,
Kurokawa
,
T.
,
Ihsan
,
A. B.
,
Li
,
X.
,
Guo
,
H.
, and
Gong
,
J. P.
,
2015
, “
Free Reprocessability of Tough and Self-Healing Hydrogels Based on Polyion Complex
,”
ACS Macro Lett.
,
4
(
9
), pp.
961
964
.
24.
Luo
,
F.
,
Sun
,
T. L.
,
Nakajima
,
T.
,
Kurokawa
,
T.
,
Zhao
,
Y.
,
Ihsan
,
A. B.
,
Guo
,
H. L.
,
Li
,
X. F.
, and
Gong
,
J. P.
,
2014
, “
Crack Blunting and Advancing Behaviors of Tough and Self-Healing Polyampholyte Hydrogel
,”
Macromolecules
,
47
(
17
), pp.
6037
6046
.
25.
Liu
,
M.
,
Ishida
,
Y.
,
Ebina
,
Y.
,
Sasaki
,
T.
,
Hikima
,
T.
,
Takata
,
M.
, and
Aida
,
T.
,
2015
, “
An Anisotropic Hydrogel With Electrostatic Repulsion Between Cofacially Aligned Nanosheets
,”
Nature
,
517
(
7532
), pp.
68
72
.
26.
Kim
,
Y. S.
,
Liu
,
M.
,
Ishida
,
Y.
,
Ebina
,
Y.
,
Osada
,
M.
,
Sasaki
,
T.
,
Hikima
,
T.
,
Takata
,
M.
, and
Aida
,
T.
,
2015
, “
Thermoresponsive Actuation Enabled By Permittivity Switching in an Electrostatically Anisotropic Hydrogel
,”
Nat. Mater.
,
14
(
10
), pp.
1002
1007
.
27.
Sun
,
J. Y.
,
Zhao
,
X.
,
Illeperuma
,
W. R.
,
Chaudhuri
,
O.
,
Oh
,
K. H.
,
Mooney
,
D. J.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2012
, “
Highly Stretchable and Tough Hydrogels
,”
Nature
,
489
(
7414
), p.
133136
.
28.
Gong
,
J. P.
,
2010
, “
Why Are Double Network Hydrogels so Tough?
Soft Matter
,
6
(
12
), pp.
2583
2590
.
29.
Yang
,
C. H.
,
Wang
,
M. X.
,
Haider
,
H.
,
Yang
,
J. H.
,
Sun
,
J.
,
Chen
,
Y. M.
,
Zhou
,
J. X.
, and
Suo
,
Z. G.
,
2013
, “
Strengthening Alginate/Polyacrylamide Hydrogels Using Various Multivalent Cations
,”
ACS Appl. Mater. Interfaces
,
5
(
21
), pp.
10418
10422
.
30.
Darnell
,
M. C.
,
Sun
,
J. Y.
,
Mehta
,
M.
,
Johnson
,
C.
,
Arany
,
P. R.
,
Suo
,
Z.
, and
Mooney
,
D. J.
,
2013
, “
Performance and Biocompatibility of Extremely Tough Alginate/Polyacrylamide Hydrogels
,”
Biomaterials
,
34
(
33
), pp.
8042
8048
.
31.
Tanaka
,
Y.
,
Kuwabara
,
R.
,
Na
,
Y. H.
,
Kurokawa
,
T.
,
Gong
,
J. P.
, and
Osada
,
Y.
,
2005
, “
Determination of Fracture Energy of High Strength Double Network Hydrogels
,”
J. Phys. Chem. B
,
109
(
23
), pp.
11559
11562
.
32.
Zheng
,
W. J.
,
An
,
N.
,
Yang
,
J. H.
,
Zhou
,
J.
, and
Chen
,
Y. M.
,
2015
, “
Tough Al-Alginate/Poly(N-Isopropylacrylamide) Hydrogel With Tunable LCST for Soft Robotics
,”
ACS Appl. Mater. Interfaces
,
7
(
3
), pp.
1758
1764
.
33.
Ma
,
C.
,
Li
,
T.
,
Zhao
,
Q.
,
Yang
,
X.
,
Wu
,
J.
,
Luo
,
Y.
, and
Xie
,
T.
,
2014
, “
Supramolecular Lego Assembly Towards Three-Dimensional Multi-Responsive Hydrogels
,”
Adv. Mater.
,
26
(
32
), pp.
5665
5669
.
34.
Sun
,
T.
,
Wu
,
Z.
, and
Gong
,
J.
,
2012
, “
Self-Assembled Structures of a Semi-Rigid Polyanion in Aqueous Solutions and Hydrogels
,”
Sci. China Chem.
,
55
(
5
), pp.
735
742
.
35.
Hong
,
S.
,
Sycks
,
D.
,
Chan
,
H. F.
,
Lin
,
S.
,
Lopez
,
G. P.
,
Guilak
,
F.
,
Leong
,
K. W.
, and
Zhao
,
X.
,
2015
, “
3D Printing of Highly Stretchable and Tough Hydrogels Into Complex, Cellularized Structures
,”
Adv. Mater.
,
27
(
27
), pp.
4035
4040
.
36.
Wu
,
Z. L.
,
Moshe
,
M.
,
Greener
,
J.
,
Therien-Aubin
,
H.
,
Nie
,
Z.
,
Sharon
,
E.
, and
Kumacheva
,
E.
,
2013
, “
Three-Dimensional Shape Transformations of Hydrogel Sheets Induced by Small-Scale Modulation of Internal Stresses
,”
Nat. Commun.
,
4
, p.
1586
.
37.
Wu
,
Z. L.
,
Kurokawa
,
T.
,
Liang
,
S.
,
Furukawa
,
H.
, and
Gong
,
J. P.
,
2010
, “
Hydrogels With Cylindrically Symmetric Structure at Macroscopic Scale by Self-Assembly of Semi-Rigid Polyion Complex
,”
J. Am. Chem. Soc.
,
132
(
29
), pp.
10064
10069
.
38.
Keplinger
,
C.
,
Sun
,
J. Y.
,
Foo
,
C. C.
,
Rothemund
,
P.
,
Whitesides
,
G. M.
, and
Suo
,
Z. G.
,
2013
, “
Stretchable, Transparent, Ionic Conductors
,”
Science
,
341
(
6149
), pp.
984
987
.
39.
Hodick
,
D.
, and
Sievers
,
A.
,
1989
, “
On the Mechanism of Trap Closure of Venus Flytrap (Dionaea-Muscipula Ellis)
,”
Planta
,
179
(
1
), pp.
32
42
.
40.
Forterre
,
Y.
,
Skotheim
,
J. M.
,
Dumais
,
J.
, and
Mahadevan
,
L.
,
2005
, “
How the Venus Flytrap Snaps
,”
Nature
,
433
(
7024
), pp.
421
425
.
41.
Borno
,
R. T.
,
Steinmeyer
,
J. D.
, and
Maharbiz
,
M. M.
,
2006
, “
Transpiration Actuation: The Design, Fabrication and Characterization of Biomimetic Microactuators Driven by the Surface Tension of Water
,”
J. Micromech. Microeng.
,
16
(
11
), pp.
2375
2383
.
42.
Vincent
,
O.
,
Weisskopf
,
C.
,
Poppinga
,
S.
,
Masselter
,
T.
,
Speck
,
T.
,
Joyeux
,
M.
,
Quilliet
,
C.
, and
Marmottant
,
P.
,
2011
, “
Ultra-Fast Underwater Suction Traps
,”
Proc. Biol. Sci./R. Soc.
,
278
(
1720
), pp.
2909
2914
.
43.
Holmes
,
D. P.
, and
Crosby
,
A. J.
,
2007
, “
Snapping Surfaces
,”
Adv. Mater.
,
19
(
21
), pp.
3589
3593
.
44.
Epstein
,
E.
,
Yoon
,
J.
,
Madhukar
,
A.
,
Hsia
,
K. J.
, and
Braun
,
P. V.
,
2015
, “
Colloidal Particles That Rapidly Change Shape Via Elastic Instabilities
,”
Small
,
11
(
45
), pp.
6051
6057
.
45.
Xia
,
C.
,
Lee
,
H.
, and
Fang
,
N.
,
2010
, “
Solvent-Driven Polymeric Micro Beam Device
,”
J. Micromech. Microeng.
,
20
(
8
), p.
085030
.
46.
Lee
,
H.
,
Xia
,
C. G.
, and
Fang
,
N. X.
,
2010
, “
First Jump of Microgel; Actuation Speed Enhancement by Elastic Instability
,”
Soft Matter
,
6
(
18
), pp.
4342
4345
.
47.
Zhang
,
X. X.
,
Zeng
,
K. Y.
,
Li
,
J.
, and
Zhang
,
Y. W.
,
2009
, “
Instability Pathways of Hydrogel Microlenses Under Concentrated Loadings
,”
J. Appl. Phys.
,
106
(
2
), p.
023536
.
48.
Shi
,
J.
,
Robitaille
,
M.
,
Muftu
,
S.
, and
Wan
,
K. T.
,
2011
, “
Deformation of a Convex Hydrogel Shell by Parallel Plate and Central Compression
,”
Exp. Mech.
,
52
(
5
), pp.
539
549
.
49.
Li
,
T.
,
Keplinger
,
C.
,
Baumgartner
,
R.
,
Bauer
,
S.
,
Yang
,
W.
, and
Suo
,
Z.
,
2013
, “
Giant Voltage-Induced Deformation in Dielectric Elastomers Near the Verge of Snap-Through Instability
,”
J. Mech. Phys. Solids
,
61
(
2
), pp.
611
628
.
50.
Li
,
T.
,
Zou
,
Z.
,
Mao
,
G.
, and
Qu
,
S.
,
2013
, “
Electromechanical Bistable Behavior of a Novel Dielectric Elastomer Actuator
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041019
.
51.
Carrell
,
J.
,
Tate
,
D.
,
Wang
,
S.
, and
Zhang
,
H.-C.
,
2011
, “
Shape Memory Polymer Snap-Fits for Active Disassembly
,”
J. Cleaner Prod.
,
19
(
17–18
), pp.
2066
2074
.
52.
Jeon
,
J.-H.
,
Cheng
,
T.-H.
, and
Oh
,
I.-K.
,
2010
, “
Snap-Through Dynamics of Buckled IPMC Actuator
,”
Sens. Actuators, A
,
158
(
2
), pp.
300
305
.
53.
Rivlin
,
R. S.
, and
Thomas
,
A. G.
,
1953
, “
Rupture of Rubber—1: Characteristic Energy for Tearing
,”
J. Polym. Sci.
,
10
(
3
), pp.
291
318
.
You do not currently have access to this content.