Acoustic radiation force generated by two counterpropagating acoustic waves in a thin layer of soft material can induce large deformation, and hence can be applied to design acoustomechanical actuators. Owing to the sensitivity of wave propagation to material geometry, the change of layer thickness may enhance wave propagation and acoustic radiation force, causing a jumping larger deformation, i.e., snap-through instability. Built upon the basis of strong elliptic condition, we develop a generalized theoretical method to evaluate the acoustomechanical stability of soft material actuators. We demonstrate that acoustomechanical instability occurs when the true tangential stiffness matrix ceases to be positive definite. Our results show that prestresses can not only enhance significantly the acoustomechanical stability of the soft material layer but also amplify its actuation stretch in thickness direction.

References

References
1.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
.
2.
Zhang
,
Q. M.
,
Li
,
H.
,
Poh
,
M.
,
Xia
,
F.
,
Cheng
,
Z. Y.
,
Xu
,
H.
, and
Huang
,
C.
,
2002
, “
An All-Organic Composite Actuator Material With a High Dielectric Constant
,”
Nature
,
419
(
6904
), pp.
284
287
.
3.
Plante
,
J.-S.
, and
Dubowsky
,
S.
,
2006
, “
Large-Scale Failure Modes of Dielectric Elastomer Actuators
,”
Int. J. Solids Struct.
,
43
(
25–26
), pp.
7727
7751
.
4.
Ha
,
S. M.
,
Yuan
,
W.
,
Pei
,
Q.
,
Pelrine
,
R.
, and
Stanford
,
S.
,
2006
, “
Interpenetrating Polymer Networks for High-Performance Electroelastomer Artificial Muscles
,”
Adv. Mater.
,
18
(
7
), pp.
887
891
.
5.
Patrick
,
L.
,
Gabor
,
K.
, and
Silvain
,
M.
,
2007
, “
Characterization of Dielectric Elastomer Actuators Based on a Hyperelastic Film Model
,”
Sens. Actuators, A
,
135
(
2
), pp.
748
757
.
6.
Goulbourne
,
N. C.
,
Mockensturm
,
E. M.
, and
Frecker
,
M. I.
,
2007
, “
Electro-Elastomers: Large Deformation Analysis of Silicone Membranes
,”
Int. J. Solids Struct.
,
44
(
9
), pp.
2609
2626
.
7.
Plante
,
J. S.
, and
Dubowsky
,
S.
,
2007
, “
On the Properties of Dielectric Elastomer Actuators and Their Design Implications
,”
Smart Mater. Struct.
,
16
(
2
), pp.
S227
S236
.
8.
Hong
,
W.
,
Zhao
,
X.
,
Zhou
,
J.
, and
Suo
,
Z.
,
2008
, “
A Theory of Coupled Diffusion and Large Deformation in Polymeric Gels
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
1779
1793
.
9.
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers
,”
Acta Mech. Solida Sin.
,
23
(
6
), pp.
549
578
.
10.
Zhao
,
X.
, and
Wang
,
Q.
,
2014
, “
Harnessing Large Deformation and Instabilities of Soft Dielectrics: Theory, Experiment, and Application
,”
Appl. Phys. Rev.
,
1
(
2
), p.
021304
.
11.
Hong
,
W.
,
Zhao
,
X.
, and
Suo
,
Z.
,
2010
, “
Large Deformation and Electrochemistry of Polyelectrolyte Gels
,”
J. Mech. Phys. Solids
,
58
(
4
), pp.
558
577
.
12.
Xiaoyi Chen
,
H.-H. D.
,
2015
, “
Swelling and Instability of a Gel Annulus
,”
Acta Mech. Sin.
,
31
(
5
), pp.
627
636
.
13.
Stark
,
K. H.
, and
Garton
,
C. G.
,
1955
, “
Electric Strength of Irradiated Polythene
,”
Nature
,
176
(
4495
), pp.
1225
1226
.
14.
Zhao
,
X.
, and
Suo
,
Z.
,
2007
, “
Method to Analyze Electromechanical Stability of Dielectric Elastomers
,”
Appl. Phys. Lett.
,
91
(
6
), p.
061921
.
15.
Díaz-Calleja
,
R.
,
Riande
,
E.
, and
Sanchis
,
M. J.
,
2008
, “
On Electromechanical Stability of Dielectric Elastomers
,”
Appl. Phys. Lett.
,
93
(
10
), p.
101902
.
16.
Zhao
,
X.
,
Hong
,
W.
, and
Suo
,
Z.
,
2007
, “
Electromechanical Hysteresis and Coexistent States in Dielectric Elastomers
,”
Phys. Rev. B
,
76
(
13
), p.
134113
.
17.
Xin
,
F. X.
, and
Lu
,
T. J.
, “
Acoustomechanical Constitutive Theory of Soft Materials
,”
Acta Mech. Sin.
(in press).
18.
Xin
,
F.
, and
Lu
,
T.
,
2016
, “
Acoustomechanics of Semicrystalline Polymers
,”
Theor. Appl. Mech. Lett.
,
6
(
1
), pp.
38
41
.
19.
Karki
,
B. B.
,
Ackland
,
G. J.
,
Crain
,
J.
,
Karki
,
B. B.
,
Ackland
,
G. J.
, and
Crain
,
J.
,
1997
, “
Elastic Instabilities in Crystals From Ab Initio Stress–Strain Relations
,”
J. Phys.: Condens. Matter
,
9
(
41
), pp.
8579
8589
.
20.
Li
,
W.
, and
Wang
,
T.
,
1999
, “
Elasticity, Stability, and Ideal Strength of β-SiC in Plane-Wave-Based Ab Initio Calculations
,”
Phys. Rev. B
,
59
(
6
), pp.
3993
4001
.
21.
Wang
,
J.
,
Li
,
J.
,
Yip
,
S.
,
Phillpot
,
S.
, and
Wolf
,
D.
,
1995
, “
Mechanical Instabilities of Homogeneous Crystals
,”
Phys. Rev. B
,
52
(
17
), pp.
12627
12635
.
22.
Gent
,
A. N.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
.
23.
Lee
,
C. P.
, and
Wang
,
T. G.
,
1993
, “
Acoustic Radiation Pressure
,”
J. Acoust. Soc. Am.
,
94
(
2
), pp.
1099
1109
.
24.
Silva
,
G. T.
,
Chen
,
S.
,
Greenleaf
,
J. F.
, and
Fatemi
,
M.
,
2005
, “
Dynamic Ultrasound Radiation Force in Fluids
,”
Phys. Rev. E
,
71
(
5
), p.
056617
.
You do not currently have access to this content.