Abstract

This work presents a collection of advanced computational methods, and their coupling, that enable prediction of fatigue-damage evolution in full-scale composite blades of wind turbines operating at realistic wind and rotor speeds. The numerical methodology involves: (1) a recently developed and validated fatigue-damage model for multilayer fiber-reinforced composites; (2) a validated coupled fluid–structure interaction (FSI) framework, wherein the 3D time-dependent aerodynamics based on the Navier–Stokes equations of incompressible flows is computed using a finite-element-based arbitrary Lagrangian–Eulerian–variational multiscale (ALE–VMS) technique, and the blade structures are modeled as rotation-free isogeometric shells; and (3) coupling of the FSI and fatigue-damage models. The coupled FSI and fatigue-damage formulations are deployed on the Micon 13M wind turbine equipped with the Sandia CX-100 blades. Damage initiation, damage progression, and eventual failure of the blades are reported.

References

1.
Sutherland
,
H.
,
1999
, “
On the Fatigue Analysis of Wind Turbines
,”
Sandia National Laboratory
, Albuquerque, NM, Report No. SAND99-0089.
2.
Griffith
,
T.
,
2015
, “
Structural Health and Prognostics Management for Offshore Wind Plants: Final Report of Sandia Research and Developments Activities
,”
Sandia National Laboratory
, Albuquerque, NM, Report No. SAND2015-2593.
3.
Bazilevs
,
Y.
,
Deng
,
X.
,
Korobenko
,
A.
,
di Scalea
,
F. L.
,
Todd
,
M.
, and
Taylor
,
S.
,
2015
, “
Isogeometric Fatigue Damage Prediction in Large-Scale Composite Structures Driven by Dynamic Sensor Data
,”
ASME J. Appl. Mech.
,
82
(
9
), p.
091008
.
4.
Darema
,
F.
,
2004
, “
Dynamic Data Driven Applications Systems: A New Paradigm for Application Simulations and Measurements
,”
4th International Conference on Computational Science
(
ICCS 2004
), Kraków, Poland, June 6–9, pp.
662
669
.
5.
Oden
,
J. T.
,
Diller
,
K. R.
,
Bajaj
,
C.
,
Browne
,
J. C.
,
Hazle
,
J.
,
Babuska
,
I.
,
Bass
,
J.
,
Demkowicz
,
L.
,
Feng
,
Y.
,
Fuentes
,
D.
,
Prudhomme
,
S.
,
Rylander
,
M. N.
,
Stafford
,
R. J.
, and
Zhang
,
Y.
,
2007
, “
Dynamic Data-Driven Finite Element Models for Laser Treatment of Prostate Cancer
,”
Num. Methods PDE
,
23
(
4
), pp.
904
922
.
6.
Bazilevs
,
Y.
,
Marsden
,
A.
,
di Scalea
,
F. L.
,
Majumdar
,
A.
, and
Tatineni
,
M.
,
2012
, “
Toward a Computational Steering Framework for Large-Scale Composite Structures Based on Continually and Dynamically Injected Sensor Data
,”
Procedia Comput. Sci.
,
9
, pp.
1149
1158
.
7.
Allaire
,
D.
,
Biros
,
G.
,
Chambers
,
J.
,
Kordonowy
,
D.
,
Ghattas
,
O.
, and
Wilcox
,
K.
,
2012
, “
Dynamic Data Driven Methods for Self-Aware Aerospace Vehicles
,”
Procedia Comput. Sci.
,
9
, pp.
1206
1210
.
8.
Allaire
,
D.
,
Chambers
,
J.
,
Cowlagi
,
R.
,
Kordonowy
,
D.
,
Lecerf
,
M.
,
Mainini
,
L.
,
Ulker
,
D.
, and
Wilcox
,
K.
,
2013
, “
An Offline/Online DDDAS Capability for Self-Aware Aerospace Vehicles
,”
Procedia Comput. Sci.
,
18
, pp.
1959
1968
.
9.
Degrieck
,
J.
, and
Paepegem
,
W. V.
,
2001
, “
Fatigue Damage Modelling of Fiber-Reinforced Composite Materials: Review
,”
Appl. Mech. Rev.
,
54
(
4
), pp.
279
300
.
10.
Raghavan
,
P.
,
Li
,
S.
, and
Ghosh
,
S.
,
2004
, “
Two Scale Response and Damage Modeling of Composite Materials
,”
Finite Element Anal. Des.
,
40
(
12
), pp.
1619
1640
.
11.
Swaminathan
,
S.
,
Ghosh
,
S.
, and
Pagano
,
N. J.
,
2006
, “
Statistically Equivalent Representative Volume Elements for Composite Microstructures: Part I—Without Damage
,”
J. Compos. Mater.
,
40
(7), pp.
583
604
.
12.
Swaminathan
,
S.
, and
Ghosh
,
S.
,
2006
, “
Statistically Equivalent Representative Volume Elements for Composite Microstructures: Part II—With Evolving Damage
,”
J. Compos. Mater.
,
40
(7), pp.
605
621
.
13.
Paepegem
,
W. V.
, and
Degrieck
,
J.
,
2004
, “
Simulating In-Plane Fatigue Damage in Woven Glass Fibre-Reinforced Composites Subject to Fully Reversed Cyclic Loading
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
(
12
), pp.
1197
1208
.
14.
Paepegem
,
W. V.
, and
Degrieck
,
J.
,
2002
, “
A New Coupled Approach of Residual Stiffness and Strength for Fatigue of Fiber-Reinforced Composites
,”
Int. J. Fatigue
,
24
(
7
), pp.
747
762
.
15.
Lee
,
S.
,
Churchfield
,
M.
,
Moriarty
,
P.
,
Jonkman
,
J.
, and
Michalakes
,
J.
,
2012
, “
Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loading
,”
AIAA
Paper No. 2012-0540.
16.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
, and
Scott
,
M.
,
2012
, “
Isogeometric Fluid-Structure Interaction Analysis With Emphasis on Non-Matching Discretizations, and With Application to Wind Turbines
,”
Comput. Methods Appl. Mech. Eng.
,
249–252
, pp.
28
41
.
17.
Korobenko
,
A.
,
Hsu
,
M.-C.
,
Akkerman
,
I.
,
Tippmann
,
J.
, and
Bazilevs
,
Y.
,
2013
, “
Structural Mechanics Modeling and FSI Simulation of Wind Turbines
,”
Math. Models Methods Appl. Sci.
,
23
(
2
), pp.
249
272
.
18.
Hsu
,
M.-C.
, and
Bazilevs
,
Y.
,
2012
, “
Fluid-Structure Interaction Modeling of Wind Turbines: Simulating the Full Machine
,”
Comput. Mech.
,
50
(
6
), pp.
821
833
.
19.
Bazilevs
,
Y.
,
Korobenko
,
A.
,
Deng
,
X.
,
Yan
,
J.
,
Kinzel
,
M.
, and
Dabiri
,
J.
,
2014
, “
FSI Modeling of Vertical-Axis Wind Turbines
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081006
.
20.
Bazilevs
,
Y.
,
Korobenko
,
A.
,
Deng
,
X.
, and
Yan
,
J.
,
2015
, “
Novel Structural Modeling and Mesh Moving Techniques for Advanced Fluid-Structure Interaction Simulation of Wind Turbines
,”
Int. J. Numer. Methods Eng.
,
102
(
3–4
), pp.
766
783
.
21.
Hsu
,
M.-C.
,
Kamensky
,
D.
,
Bazilevs
,
Y.
,
Sacks
,
M. S.
, and
Hughes
,
T. J. R.
,
2014
, “
Fluid-Structure Interaction Analysis of Bioprosthetic Heart Valves: Significance of Arterial Wall Deformation
,”
Comput. Mech.
,
54
(
4
), pp.
1055
1071
.
22.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Cottrel
,
J. A.
,
Hughes
,
T. J. R.
,
Reali
,
A.
, and
Scovazzi
,
G.
,
2007
, “
Variational Multiscale Residual-Based Turbulence Modeling for Large Eddy Simulation of Incompressible Flows
,”
Comput. Methods Appl. Mech. Eng.
,
197
(1–4), pp.
173
201
.
23.
Hughes
,
T. J. R.
,
Liu
,
W. K.
, and
Zimmermann
,
T. K.
,
1981
, “
Lagrangian–Eulerian Finite Element Formulation for Incompressible Viscous Flows
,”
Comput. Methods Appl. Mech. Eng.
,
29
(
3
), pp.
329
349
.
24.
Takizawa
,
K.
,
Bazilevs
,
Y.
, and
Tezduyar
,
T. E.
,
2012
, “
Space–Time and ALE–VMS Techniques for Patient-Specific Cardiovascular Fluid-Structure Interaction Modeling
,”
Arch. Comput. Methods Eng.
,
19
(
2
), pp.
171
225
.
25.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2012
, “
ALE–VMS and ST–VMS Methods for Computer Modeling of Wind-Turbine Rotor Aerodynamics and Fluid-Structure Interaction
,”
Math. Models Methods Appl. Sci.
,
22
(
Suppl. 2
), p.
1230002
.
26.
Korobenko
,
A.
,
Hsu
,
M.-C.
,
Akkerman
,
I.
, and
Bazilevs
,
Y.
,
2013
. “
Aerodynamic Simulation of Vertical-Axis Wind Turbines
,”
ASME J. Appl. Mech.
,
81
(
2
), p.
021011
.
27.
Bazilevs
,
Y.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2013
, “
Challenges and Directions in Computational Fluid-Structure Interaction
,”
Math. Models Methods Appl. Sci.
,
23
(
2
), pp.
215
221
.
28.
Takizawa
,
K.
,
Bazilevs
,
Y.
,
Tezduyar
,
T. E.
,
Hsu
,
M.-C.
,
Øiseth
,
O.
,
Mathisen
,
K. M.
,
Kostov
,
N.
, and
McIntyre
,
S.
,
2014
, “
Engineering Analysis and Design With ALE–VMS and Space–Time Methods
,”
Arch. Comput. Methods Eng.
,
21
(
4
), pp.
481
508
.
29.
Takizawa
,
K.
,
Bazilevs
,
Y.
,
Tezduyar
,
T. E.
,
Long
,
C. C.
,
Marsden
,
A. L.
, and
Schjodt
,
K.
,
2014
, “
ST and ALE–VMS Methods for Patient-Specific Cardiovascular Fluid Mechanics Modeling
,”
Math. Models Methods Appl. Sci.
,
24
(
12
), pp.
2437
2486
.
30.
Kamensky
,
D.
,
Hsu
,
M.-C.
,
Schillinger
,
D.
,
Evans
,
J.
,
Aggarwal
,
A.
,
Bazilevs
,
Y.
,
Sacks
,
M.
, and
Hughes
,
T.
,
2015
, “
An Immersogeometric Variational Framework for Fluid-Structure Interaction: Application to Bioprosthetic Heart Valves
,”
Comput. Methods Appl. Mech. Eng.
,
284
, pp.
1005
1053
.
31.
Bazilevs
,
Y.
,
Yan
,
J.
,
de Stadler
,
M.
, and
Sarkar
,
S.
,
2014
, “
Computation of the Flow Over a Sphere at Re = 3700: A Comparison of Uniform and Turbulent Inflow Conditions
,”
ASME J. Appl. Mech.
,
81
(
12
), p.
121003
.
32.
Bazilevs
,
Y.
,
Korobenko
,
A.
,
Yan
,
J.
,
Pal
,
A.
,
Gohari
,
S.
, and
Sarkar
,
S.
,
2015
, “
ALE–VMS Formulation for Stratified Turbulent Incompressible Flows With Applications
,”
Math. Models Methods Appl. Sci.
,
25
(
12
), pp.
2349
2375
.
33.
Takizawa
,
K.
,
Tezduyar
,
T. E.
, and
Kolesar
,
R.
,
2015
, “
FSI Modeling of the Orion Spacecraft Drogue Parachutes
,”
Comput. Mech.
,
55
(
6
), pp.
1167
1179
.
34.
Takizawa
,
K.
,
Tezduyar
,
T. E.
, and
Buscher
,
A.
,
2015
, “
Space–Time Computational Analysis of MAV Flapping-Wing Aerodynamics With Wing Clapping
,”
Comput. Mech.
,
55
(
6
), pp.
1131
1141
.
35.
Takizawa
,
K.
,
Tezduyar
,
T. E.
, and
Kuraishi
,
T.
,
2015
, “
Multiscale ST Methods for Thermo-Fluid Analysis of a Ground Vehicle and Its Tires
,”
Math. Models Methods Appl. Sci.
,
25
(
12
), pp.
2227
2255
.
36.
Takizawa
,
K.
,
Tezduyar
,
T.
,
Mochizuki
,
H.
,
Hattori
,
H.
,
Mei
,
S.
,
Pan
,
L.
, and
Montel
,
K.
,
2015
, “
Space–Time VMS Method for Flow Computations With Slip Interfaces (ST-SI)
,”
Math. Models Methods Appl. Sci.
,
25
(
12
), pp.
2377
2406
.
37.
Bazilevs
,
Y.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2015
, “
New Directions and Challenging Computations in Fluid Dynamics Modeling With Stabilized and Multiscale Methods
,”
Math. Models Methods Appl. Sci.
,
25
(
12
), pp.
2217
2226
.
38.
Bazilevs
,
Y.
,
Takizawa
,
K.
,
Tezduyar
,
T.
,
Hsu
,
M.-C.
,
Kostov
,
N.
, and
McIntyre
,
S.
,
2014
, “
Aerodynamic and FSI Analysis of Wind Turbines With the ALE–VMS and ST–VMS Methods
,”
Arch. Comput. Methods Eng.
,
21
(
4
), pp.
359
398
.
39.
Takizawa
,
K.
,
Tezduyar
,
T. E.
,
Boswell
,
C.
,
Kolesar
,
R.
, and
Montel
,
K.
,
2014
, “
FSI Modeling of the Reefed Stages and Disreefing of the Orion Spacecraft Parachutes
,”
Comput. Mech.
,
54
(
5
), pp.
1203
1220
.
40.
Takizawa
,
K.
,
Tezduyar
,
T. E.
,
Kolesar
,
R.
,
Boswell
,
C.
,
Kanai
,
T.
, and
Montel
,
K.
,
2014
, “
Multiscale Methods for Gore Curvature Calculations From FSI Modeling of Spacecraft Parachutes
,”
Comput. Mech.
,
54
(
6
), pp.
1461
1476
.
41.
Takizawa
,
K.
,
Tezduyar
,
T. E.
, and
Kostov
,
N.
,
2014
, “
Sequentially-Coupled Space–Time FSI Analysis of Bio-Inspired Flapping-Wing Aerodynamics of an MAV
,”
Comput. Mech.
,
54
(
2
), pp.
213
233
.
42.
Takizawa
,
K.
,
2014
, “
Computational Engineering Analysis With the New-Generation Space–Time Methods
,”
Comput. Mech.
,
54
(
2
), pp.
193
211
.
43.
Takizawa
,
K.
,
Tezduyar
,
T. E.
,
Boben
,
J.
,
Kostov
,
N.
,
Boswell
,
C.
, and
Buscher
,
A.
,
2013
, “
Fluid-Structure Interaction Modeling of Clusters of Spacecraft Parachutes With Modified Geometric Porosity
,”
Comput. Mech.
,
52
(
6
), pp.
1351
1364
.
44.
Xu
,
F.
,
Schillinger
,
D.
,
Kamensky
,
D.
,
Varduhn
,
V.
,
Wang
,
C.
, and
Hsu
,
M.-C.
, “
The Tetrahedral Finite Cell Method for Fluids: Immersogeometric Analysis of Turbulent Flow Around Complex Geometries
,”
Comput. Fluids
(in press).
45.
Kiendl
,
J.
,
Bletzinger
,
K.-U.
,
Linhard
,
J.
, and
Wüchner
,
R.
,
2009
, “
Isogeometric Shell Analysis With Kirchhoff–Love Elements
,”
Comput. Methods Appl. Mech. Eng.
,
198
(49–52), pp.
3902
3914
.
46.
Kiendl
,
J.
,
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Wüchner
,
R.
, and
Bletzinger
,
K.-U.
,
2010
, “
The Bending Strip Method for Isogeometric Analysis of Kirchhoff–Love Shell Structures Comprised of Multiple Patches
,”
Comput. Methods Appl. Mech. Eng.
,
199
(37–40), pp.
2403
2416
.
47.
Benson
,
D. J.
,
Bazilevs
,
Y.
,
Hsu
,
M.-C.
, and
Hughes
,
T. J. R.
,
2011
, “
A Large Deformation, Rotation-Free, Isogeometric Shell
,”
Comput. Methods Appl. Mech. Eng.
,
200
(13–16), pp.
1367
1378
.
48.
Echter
,
R.
,
Oesterle
,
B.
, and
Bischoff
,
M.
,
2013
, “
A Hierarchic Family of Isogeometric Shell Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
,
254
, pp.
170
180
.
49.
Hughes
,
T. J. R.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry, and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(39–41), pp.
4135
4195
.
50.
Cottrell
,
J. A.
,
Hughes
,
T. J. R.
, and
Bazilevs
,
Y.
,
2009
,
Isogeometric Analysis: Toward Integration of CAD and FEA
,
Wiley
,
Chichester, UK
.
51.
Raknes
,
S.
,
Deng
,
X.
,
Bazilevs
,
Y.
,
Benson
,
D.
,
Mathisen
,
K.
, and
Kvamsdal
,
T.
,
2013
, “
Isogeometric Rotation-Free Bending-Stabilized Cables: Statics, Dynamics, Bending Strips and Coupling With Shells
,”
Comput. Methods Appl. Mech. Eng.
,
263
, pp.
127
143
.
52.
Schillinger
,
D.
,
Borden
,
M.
, and
Stolarski
,
H.
,
2015
, “
Isogeometric Collocation for Phase-Field Fracture Models
,”
Comput. Methods Appl. Mech. Eng.
,
284
, pp.
583
610
.
53.
Borden
,
M.
,
Hughes
,
T.
,
Landis
,
C.
, and
Verhoosel
,
C.
,
2014
, “
A Higher-Order Phase-Field Model for Brittle Fracture: Formulation and Analysis Within the Isogeometric Analysis Framework
,”
Comput. Methods Appl. Mech. Eng.
,
273
, pp.
100
118
.
54.
Hsu
,
M.-C.
,
Wang
,
C.
,
Herrema
,
A.
,
Schillinger
,
D.
,
Ghoshal
,
A.
, and
Bazilevs
,
Y.
,
2015
, “
An Interactive Geometry Modeling and Parametric Design Platform for Isogeometric Analysis
,”
Comput. Math. Appl.
,
70
(
7
), pp.
1481
1500
.
55.
Kiendl
,
J.
,
Hsu
,
M.-C.
,
Wu
,
M.
, and
Reali
,
A.
,
2015
, “
Isogeometric Kirchhoff–Love Shell Formulations for General Hyperelastic Materials
,”
Comput. Methods Appl. Mech. Eng.
,
291
, pp.
280
303
.
56.
Hosseini
,
S.
,
Remmers
,
J.
,
Verhoosel
,
C.
, and
de Borst
,
R.
,
2015
, “
Propagation of Delamination in Composite Materials With Isogeometric Continuum Shell Elements
,”
Int. J. Numer. Methods Eng.
,
102
(3–4), pp.
159
179
.
57.
Guo
,
Y.
, and
Ruess
,
M.
,
2015
, “
A Layerwise Isogeometric Approach for NURBS-Derived Laminate Composite Shells
,”
Compos. Struct.
,
124
, pp.
300
309
.
58.
Valizadeh
,
N.
,
Bazilevs
,
Y.
,
Chen
,
J.
, and
Rabczuk
,
T.
,
2015
, “
A Coupled IGA–Meshfree Discretization of Arbitrary Order of Accuracy and Without Global Geometry Parameterization
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
20
37
.
59.
Hillman
,
M.
,
Chen
,
J.
, and
Bazilevs
,
Y.
,
2015
, “
Variationally Consistent Domain Integration for Isogeometric Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
284
, pp.
521
540
.
60.
van Opstal
,
T.
,
Fonn
,
E.
,
Holdahl
,
R.
,
Kvamsdal
,
T.
,
Kvarving
,
A.
,
Mathisen
,
K.
,
Nordanger
,
K.
,
Okstad
,
K.
,
Rasheed
,
A.
, and
Tabib
,
M.
,
2015
, “
Isogeometric Methods for CFD and FSI-Simulation of Flow Around Turbine Blades
,”
Energy Procedia
,
80
, pp.
442
449
.
61.
Veiga
,
L. B. D.
,
Hughes
,
T.
,
Kiendl
,
J.
,
Lovadina
,
C.
,
Niiranen
,
J.
,
Reali
,
A.
, and
Speleers
,
H.
,
2015
, “
A Locking-Free Model for Reissnermindlin Plates: Analysis and Isogeometric Implementation Via NURBS and Triangular NURPS
,”
Math. Models Methods Appl. Sci.
,
25
(8), pp.
1519
1551
.
62.
Anitescu
,
C.
,
Zhang
,
Y. Y. J.
, and
Rabczuk
,
T.
,
2015
, “
An Isogeometric Collocation Method Using Superconvergent Points
,”
Comput. Methods Appl. Mech. Eng.
,
284
, pp.
1073
1097
.
63.
Zayas
,
J.
, and
Johnson
,
W.
,
2008
, “
3X-100 Blade Field Test
,” Wind Energy Technology Department,
Sandia National Laboratories
, Albuquerque, NM, Report No. SAND2007-5138.
64.
Berry
,
D.
, and
Ashwill
,
T.
,
2007
, “
Design of 9-Meter Carbon-Fiberglass Prototype Blades: CX-100 and TX-100
,”
Sandia National Laboratories
, Albuquerque, NM, Report No. SAND2007-0201.
65.
Bazilevs
,
Y.
, and
Hughes
,
T. J. R.
,
2007
, “
Weak Imposition of Dirichlet Boundary Conditions in Fluid Mechanics
,”
Comput. Fluids
,
36
(
1
), pp.
12
26
.
66.
Bazilevs
,
Y.
,
Michler
,
C.
,
Calo
,
V. M.
, and
Hughes
,
T. J. R.
,
2007
, “
Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
196
(49–52), pp.
4853
4862
.
67.
Bazilevs
,
Y.
,
Michler
,
C.
,
Calo
,
V. M.
, and
Hughes
,
T. J. R.
,
2010
, “
Isogeometric Variational Multiscale Modeling of Wall-Bounded Turbulent Flows With Weakly Enforced Boundary Conditions on Unstretched Meshes
,”
Comput. Methods Appl. Mech. Eng.
,
199
(13–16), pp.
780
790
.
68.
Bazilevs
,
Y.
, and
Akkerman
,
I.
,
2010
, “
Large Eddy Simulation of Turbulent Taylor–Couette Flow Using Isogeometric Analysis and the Residual–Based Variational Multiscale Method
,”
J. Comput. Phys.
,
229
(
9
), pp.
3402
3414
.
69.
Hsu
,
M.-C.
,
Akkerman
,
I.
, and
Bazilevs
,
Y.
,
2012
, “
Wind Turbine Aerodynamics Using ALE–VMS: Validation and Role of Weakly Enforced Boundary Conditions
,”
Comput. Mech.
,
50
(
4
), pp.
499
511
.
70.
Akkerman
,
I.
,
Bazilevs
,
Y.
,
Kees
,
C. E.
, and
Farthing
,
M. W.
,
2011
, “
Isogeometric Analysis of Free-Surface Flow
,”
J. Comput. Phys.
,
230
(
11
), pp.
4137
4152
.
71.
Kees
,
C. E.
,
Akkerman
,
I.
,
Farthing
,
M. W.
, and
Bazilevs
,
Y.
,
2011
, “
A Conservative Level Set Method Suitable for Variable-Order Approximations and Unstructured Meshes
,”
J. Comput. Phys.
,
230
(
12
), pp.
4536
4558
.
72.
Akkerman
,
I.
,
Bazilevs
,
Y.
,
Benson
,
D. J.
,
Farthing
,
M. W.
, and
Kees
,
C. E.
,
2012
, “
Free-Surface Flow and Fluid–Object Interaction Modeling With Emphasis on Ship Hydrodynamics
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
010905
.
73.
Akkerman
,
I.
,
Dunaway
,
J.
,
Kvandal
,
J.
,
Spinks
,
J.
, and
Bazilevs
,
Y.
,
2012
, “
Toward Free-Surface Modeling of Planing Vessels: Simulation of the Fridsma Hull Using ALE–VMS
,”
Comput. Mech.
,
50
(
6
), pp.
719
727
.
74.
Hsu
,
M.-C.
,
Akkerman
,
I.
, and
Bazilevs
,
Y.
,
2014
, “
Finite Element Simulation of Wind Turbine Aerodynamics: Validation Study Using NREL Phase VI Experiment
,”
Wind Energy
,
17
(
3
), pp.
461
481
.
75.
Augier
,
B.
,
Yan
,
J.
,
Korobenko
,
A.
,
Czarnowski
,
J.
,
Ketterman
,
G.
, and
Bazilevs
,
Y.
,
2015
, “
Experimental and Numerical FSI Study of Compliant Hydrofoils
,”
Comput. Mech.
,
55
(
6
), pp.
1079
1090
.
76.
Yan
,
J.
,
Augier
,
B.
,
Korobenko
,
A.
,
Czarnowski
,
J.
,
Ketterman
,
G.
, and
Bazilevs
,
Y.
, “
FSI Modeling of a Propulsion System Based on Compliant Hydrofoils in a Tandem Configuration
,”
Comput. Fluids
(in press).
77.
Bazilevs
,
Y.
, and
Hughes
,
T. J. R.
,
2008
, “
NURBS-Based Isogeometric Analysis for the Computation of Flows About Rotating Components
,”
Comput. Mech.
,
43
(
1
), pp.
143
150
.
78.
Benson
,
D. J.
,
Hartmann
,
S.
,
Bazilevs
,
Y.
,
Hsu
,
M.-C.
, and
Hughes
,
T.
,
2013
, “
Blended Isogeometric Shells
,”
Comput. Methods Appl. Mech. Eng.
,
255
, pp.
133
146
.
79.
Reddy
,
J. N.
,
2004
,
Mechanics of Laminated Composite Plates and Shells: Theory and Analysis
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
80.
Daniel
, I
. M.
, and
Ishai
,
O.
,
2006
,
Engineering Mechanics of Composite Materials
,
Oxford University Press
, New York.
81.
Farinholt
,
K.
,
Taylor
,
S.
,
Park
,
G.
, and
Ammerman
,
C.
,
2012
, “
Full-Scale Fatigue Tests of CX-100 Wind Turbine Blades. Part I: Testing
,”
Proc. SPIE
,
8343
, p.
83430P
.
82.
Taylor
,
S.
,
Jeong
,
H.
,
Jang
,
J.
,
Park
,
G.
,
Farinholt
,
K.
,
Todd
,
M.
, and
Ammerman
,
C.
,
2012
, “
Full-Scale Fatigue Tests of CX-100 Wind Turbine Blades. Part II: Analysis
,”
Proc. SPIE
,
8343
, p.
83430Q
.
83.
Tezduyar
,
T. E.
,
2001
, “
Finite Element Methods for Flow Problems With Moving Boundaries and Interfaces
,”
Arch. Comput. Methods Eng.
,
8
(
2
), pp.
83
130
.
84.
Tezduyar
,
T. E.
,
Sathe
,
S.
,
Keedy
,
R.
, and
Stein
,
K.
,
2006
, “
Space–Time Finite Element Techniques for Computation of Fluid-Structure Interactions
,”
Comput. Methods Appl. Mech. Eng.
,
195
(17–18), pp.
2002
2027
.
85.
Tezduyar
,
T. E.
,
Sathe
,
S.
, and
Stein
,
K.
,
2006
, “
Solution Techniques for the Fully-Discretized Equations in Computation of Fluid-Structure Interactions With the Space–Time Formulations
,”
Comput. Methods Appl. Mech. Eng.
,
195
(41–43), pp.
5743
5753
.
86.
Tezduyar
,
T. E.
, and
Sathe
,
S.
,
2007
, “
Modeling of Fluid-Structure Interactions With the Space–Time Finite Elements: Solution Techniques
,”
Int. J. Numer. Methods Fluids
,
54
(6–8), pp.
855
900
.
87.
Bazilevs
,
Y.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2013
,
Computational Fluid-Structure Interaction: Methods and Applications
,
Wiley
, Hoboken, NJ.
88.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
75
.
89.
Jansen
,
K. E.
,
Whiting
,
C. H.
, and
Hulbert
,
G. M.
,
2000
, “
A Generalized-α Method for Integrating the Filtered Navier–Stokes Equations With a Stabilized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
190
(3–4), pp.
305
319
.
90.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Hughes
,
T. J. R.
, and
Zhang
,
Y.
,
2008
, “
Isogeometric Fluid-Structure Interaction: Theory, Algorithms, and Computations
,”
Comput. Mech.
,
43
(
1
), pp.
3
37
.
You do not currently have access to this content.