Contact problem of a layer–substrate system comprising of an elastic layer and an elastic substrate perfectly bonded to each other with surface effects based on Gurtin–Murdoch (GM) model indented by a long rigid cylinder is solved. The requisite Green's function relating surface displacement to surface load is obtained semi-analytically through the combination of the Airy stress function and Fourier transforms under the plane-strain condition. The contact solution is analyzed to study the influence of layer thickness, modulus mismatch between the layer and substrate, and surface parameters on contact size and contact pressure during indentation of a layer–substrate system. A map is presented which indicates whether during indentation by a rigid cylinder, a layer–substrate system is required or a homogeneous system based on layer properties is enough for a given shear modulus mismatch ratio and layer thickness. The map and the related analysis clearly indicate that whenever the contact size or layer thickness approaches intrinsic length scale based on the ratio of surface parameter and bulk elastic properties, surface effects should be considered.

References

References
1.
Subramanian
,
C.
, and
Strafford
,
K. N.
,
1993
, “
Review of Multicomponent and Multilayer Coatings for Tribological Applications
,”
Wear
,
165
(
1
), pp.
85
95
.
2.
Certhoux
,
E.
,
Ansart
,
F.
,
Turq
,
V.
,
Bonino
,
J. P.
,
Sobrino
,
J. M.
,
Garcia
,
J.
, and
Reby
,
J.
,
2013
, “
New Solgel Formulations to Increase the Barrier Effect of a Protective Coating Against the Corrosion of Steels
,”
Prog. Org. Coat.
,
76
(
1
), pp.
165
172
.
3.
Mayer
,
T. M.
,
Elam
,
J. M.
,
George
,
S. M.
,
Kotula
,
P. G.
, and
Goeke
,
R. S.
,
2003
, “
Atomic-Layer Deposition of Wear-Resistant Coatings for Microelectromechanical Devices
,”
Appl. Phys. Lett.
,
82
(
17
), pp.
2283
2285
.
4.
Galan
,
R. C.
,
Garrido
,
F. J.
,
Castro
,
R. D.
, and
Espejo
,
S.
,
2003
, “
A Bio-Inspired Two-Layer Mixed-Signal Flexible Programmable Chip for Early Vision
,”
IEEE Trans. Neural Networks
,
14
(
5
), pp.
1313
1336
.
5.
Freund
,
L. B.
, and
Suresh
,
S.
,
2004
,
Thin Film Materials: Stress, Defect Formation and Surface Evolution
,
Cambridge University Press
,
Cambridge, UK
.
6.
Zhao
,
X. J.
, and
Rajapakse
,
R. K. N. D.
,
2009
, “
Analytical Solutions for a Surface-Loaded Isotropic Elastic Layer With Surface Energy Effects
,”
Int. J. Eng. Sci.
,
47
(
11–12
), pp.
1433
1444
.
7.
Miller
,
R. E.
, and
Shenoy
,
V. B.
,
2000
, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
,
11
(
3
), pp.
139
147
.
8.
Chen
,
W. T.
,
1971
, “
Computation of Stresses and Displacements in a Layered Elastic Medium
,”
Int. J. Eng. Sci.
,
9
(
9
), pp.
775
800
.
9.
Li
,
J.
, and
Chou
,
T.
,
1997
, “
Elastic Field of a Thin-Film/Substrate System Under an Axisymmetric Loading
,”
Int. J. Solids Struct.
,
34
(
35–36
), pp.
4463
4478
.
10.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
11.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
12.
Barber
,
J.
, and
Ciavarella
,
M.
,
2000
, “
Contact Mechanics
,”
Int. J. Solids Struct.
,
37
(
1
), pp.
29
43
.
13.
Gupta
,
P. K.
, and
Walowit
,
J.
,
1974
, “
Contact Stresses Between an Elastic Cylinder and a Layered Elastic Solid
,”
ASME J. Tribol.
,
96
(
2
), pp.
250
257
.
14.
Perriot
,
A.
, and
Barthel
,
E.
,
2004
, “
Elastic Contact to a Coated Half-Space: Effective Elastic Modulus and Real Penetration
,”
J. Mater. Res.
,
19
(
2
), pp.
600
608
.
15.
Greenwood
,
J.
, and
Barber
,
J.
,
2012
, “
Indentation of an Elastic Layer by a Rigid Cylinder
,”
Int. J. Solids Struct.
,
49
(
21
), pp.
2962
2977
.
16.
Batra
,
R.
, and
Jiang
,
W.
,
2008
, “
Analytical Solution of the Contact Problem of a Rigid Indenter and an Anisotropic Linear Elastic Layer
,”
Int. J. Solids Struct.
,
45
(
22
), pp.
5814
5830
.
17.
Zhang
,
G. P.
,
Sun
,
K. H.
,
Zhang
,
B.
,
Gong
,
J.
,
Sun
,
C.
, and
Wang
,
Z. G.
,
2008
, “
Tensile and Fatigue Strength of Ultrathin Copper Films
,”
Mater. Sci. Eng. A
,
483–484
, pp.
387
390
.
18.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
57
(
4
), pp.
291
323
.
19.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1978
, “
Surface Stresses in Solids
,”
Int. J. Solids Struct.
,
14
(
6
), pp.
431
440
.
20.
Steigmann
,
D. J.
, and
Ogden
,
R. W.
,
1999
, “
Elastic Surface-Substrate Interactions
,”
Proc. R. Soc. London Ser. A
,
455
(
1982
), pp.
437
474
.
21.
Wang
,
G. F.
, and
Feng
,
X. Q.
,
2007
, “
Effects of Surface Stresses on Contact Problems at Nanoscale
,”
J. Appl. Phys.
,
101
(
1
), p.
013510
.
22.
Zhou
,
S.
, and
Gao
,
X. L.
,
2013
, “
Solutions of Half-Space and Half-Plane Contact Problems Based on Surface Elasticity
,”
Z. Angew. Math. Phys.
,
64
(
1
), pp.
145
166
.
23.
Gao
,
X.
,
Hao
,
F.
,
Fang
,
D.
, and
Huang
,
Z.
,
2013
, “
Boussinesq Problem With the Surface Effect and Its Application to Contact Mechanics at the Nanoscale
,”
Int. J. Solids Struct.
,
50
(
16–17
), pp.
2620
2630
.
24.
Lei
,
D. X.
,
Wang
,
L. Y.
, and
Ou
,
Z. Y.
,
2012
, “
Elastic Analysis for Nanocontact Problem With Surface Stress Effects Under Shear Load
,”
J. Nanomater.
,
2012
, pp.
3:1
3:7
.
25.
Zhao
,
X. J.
, and
Rajapakse
,
R. K. N. D.
,
2013
, “
Elastic Field of a Nano-Film Subjected to Tangential Surface Load: Asymmetric Problem
,”
Eur. J. Mech. A/Solids
,
39
, pp.
69
75
.
26.
Long
,
J. M.
,
Wang
,
G. F.
,
Feng
,
X. Q.
, and
Yu
,
S. W.
,
2012
, “
Two-Dimensional Hertzian Contact Problem With Surface Tension
,”
Int. J. Solids Struct.
,
49
(
13
), pp.
1588
1594
.
27.
Long
,
J. M.
, and
Wang
,
G. F.
,
2013
, “
Effects of Surface Tension on Axisymmetric Hertzian Contact Problem
,”
Mech. Mater.
,
56
, pp.
65
70
.
28.
Pinyochotiwong
,
Y.
,
Rungamornrat
,
J.
, and
Senjuntichai
,
T.
,
2013
, “
Rigid Frictionless Indentation on Elastic Half Space With Influence of Surface Stresses
,”
Int. J. Eng. Sci.
,
71
, pp.
15
35
.
29.
Ou
,
Z. Y.
, and
Pang
,
S. D.
,
2013
, “
Fundamental Solutions to Hertzian Contact Problems at Nanoscale
,”
Acta Mech.
,
224
(
1
), pp.
109
121
.
30.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
1987
,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
31.
Sneddon
,
I. N.
,
1995
,
Fourier Transforms
,
Dover Publications
,
New York
.
32.
Vasu
,
T. S.
, and
Bhandakkar
,
T. K.
,
2015
, “
Semi-Analytical Solution to Plane Strain Loading of Elastic Layered Coating on an Elastic Substrate
,”
Sadhana
,
40
(
7
), pp.
2221
2238
.
33.
Wang
,
J.
,
Huang
,
Z.
,
Duan
,
H.
,
Yu
,
S.
,
Feng
,
X.
,
Wang
,
G.
,
Zhang
,
W.
, and
Wang
,
T.
,
2011
, “
Surface Stress Effect in Mechanics of Nanostructured Materials
,”
Acta Mech. Solida Sin.
,
24
(
1
), pp.
52
82
.
34.
Gad
,
A.
,
Mahmoud
,
F.
,
Alshorbagy
,
A. E.
, and
Ali-Eldin
,
S.
,
2014
, “
Finite Element Modeling for Elastic Nano-Indentation Problems Incorporating Surface Energy Effect
,”
Int. J. Mech. Sci.
,
84
, pp.
158
170
.
35.
Bagault
,
C.
,
Nelias
,
D.
,
Baietto
,
M.-C.
, and
Ovaert
,
T. C.
,
2013
, “
Contact Analyses for Anisotropic Half-Space Coated With an Anisotropic Layer: Effect of the Anisotropy on the Pressure Distribution and Contact Area
,”
Int. J. Solids Struct.
,
50
(
5
), pp.
743
754
.
36.
Hayashi
,
T.
,
Koguchi
,
H.
, and
Nishi
,
N.
,
2013
, “
Contact Analysis for Anisotropic Elastic Materials Considering Surface Stress and Surface Elasticity
,”
J. Mech. Phys. Solids
,
61
(
8
), pp.
1753
1767
.
37.
Hayashi
,
T.
, and
Koguchi
,
H.
,
2015
, “
Adhesive Contact Analysis for Anisotropic Materials Considering Surface Stress and Surface Elasticity
,”
Int. J. Solids Struct.
,
53
, pp.
138
147
.
38.
Gao
,
X.-L.
, and
Mao
,
C.
,
2014
, “
Solution of the Contact Problem of a Rigid Conical Frustum Indenting a Transversely Isotropic Elastic Half-Space
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041007
.
39.
Zhou
,
S.-S.
,
Gao
,
X.-L.
, and
He
,
Q.-C.
,
2011
, “
A Unified Treatment of Axisymmetric Adhesive Contact Problems Using the Harmonic Potential Function Method
,”
J. Mech. Phys. Solids
,
59
(
2
), pp.
145
159
.
40.
Erdogan
,
F.
, and
Gupta
,
G.
,
1972
, “
On the Numerical Solution of Singular Integral Equations (Singular Integral Equations Numerical Solution From Gauss–Chebyshev Formulas for Mixed Boundary Value Problems)
,”
Q. Appl. Math.
,
29
, pp.
525
534
.
You do not currently have access to this content.