We extend the classical J-integral approach to calculate the energy release rate of cracks by prolonging the contour path of integration across a traction-transmitting interphase that accounts for various phenomena occurring within the gap region defined by the nominal crack surfaces. Illustrative examples show how the closed contours, together with a proper definition of the energy momentum tensor, account for the energy dissipation associated with material separation. For cracks surfaces subjected to cohesive forces, the procedure directly establishes an energetic balance à la Griffith. For cracks modeled as phase-fields, for which no neat material separation occurs, integration of a generalized energy momentum (GEM) tensor along the closed contour path that traverses the damaged material permits the calculation of the energy release rate and the residual elasticity of the completely damaged material.

References

References
1.
Eshelby
,
J. D.
,
1951
, “
The Force on Elastic Singularity
,”
Philos. Trans. R. Soc. London, Ser. A
,
244
(877), pp.
87
112
.
2.
Eshelby
,
J.
,
1975
, “
The Elastic Energy-Momentum Tensor
,”
J. Elasticity
,
5
(
3–4
), pp.
321
335
.
3.
Gurtin
,
M.
,
1995
, “
The Nature of Configurational Forces
,”
Arch. Ration. Mech. Anal.
,
131
(
1
), pp.
67
100
.
4.
Gurtin
,
M.
,
2008
,
Configurational Forces as Basic Concepts of Continuum Physics
,
Springer Science & Business Media
,
New York
.
5.
Gurtin
,
M.
, and
Podio-Guidugli
,
P.
,
1996
, “
Configurational Forces and the Basic Laws of Crack Propagation
,”
J. Mech. Phys. Solids
,
44
(
6
), pp.
905
927
.
6.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
.
7.
Fosdick
,
R.
, and
Royer-Carfagni
,
G.
,
2005
, “
A Stokes Theorem for Second-Order Tensor Fields and Its Implications in Continuum Mechanics
,”
Int. J. Non-Linear Mech.
,
40
(2–3), pp.
381
386
.
8.
Love
,
A.
,
1927
,
A Treatise on the Mathematical Theory of Elasticity
,
4th ed.
,
Cambridge University Press
,
Cambridge
.
9.
Barenblatt
,
G. I.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.
10.
da Silva
,
M.
,
Duda
,
F.
, and
Fried
,
E.
,
2013
, “
Sharp-Crack Limit of a Phase-Field Model for Brittle Fracture
,”
J. Mech. Phys. Solids
,
61
(
11
), pp.
2178
2195
.
11.
Karma
,
A.
,
Kessler
,
D.
, and
Levine
,
H.
,
2001
, “
Phase-Field Model of Mode III Dynamic Fracture
,”
Phys. Rev. Lett.
,
87
(4), p.
455011
.
12.
Hakim
,
V.
, and
Karma
,
A.
,
2009
, “
Laws of Crack Motion and Phase-Field Models of Fracture
,”
J. Mech. Phys. Solids
,
57
(
2
), pp.
342
368
.
13.
Bourdin
,
B.
,
Francfort
,
G.
, and
Marigo
,
J. J.
,
2000
, “
Numerical Experiments in Revisited Brittle Fracture
,”
J. Mech. Phys. Solids
,
48
(
4
), pp.
797
826
.
14.
Ambrosio
,
L.
, and
Tortorelli
,
V.
,
1990
, “
Approximation of Functionals Depending on Jumps by Elliptic Functionals Via Gamma-Convergence
,”
Commun. Pure Appl. Math.
,
43
(8), pp.
999
1036
.
15.
Frémond
,
M.
, and
Nedjar
,
B.
,
1996
, “
Damage, Gradient of Damage and Principle of Virtual Power
,”
Int. J. Solids Struct.
,
33
(
8
), pp.
1083
1103
.
16.
Francfort
,
G.
, and
Marigo
,
J.
,
1998
, “
Revisiting Brittle Fracture as an Energy Minimization Problem
,”
J. Mech. Phys. Solids
,
46
(
8
), pp.
1319
1342
.
17.
Sarrado
,
C.
,
Turon
,
A.
,
Costa
,
J.
, and
Jordi
,
R.
,
2016
, “
On the Validity of Linear Elastic Fracture Mechanics Methods to Measure the Fracture Toughness of Adhesive Joints
,”
Int. J. Solids Struct.
,
81
, pp.
110
116
.
18.
Bhandakkar
,
T.
, and
Gao
,
H.
,
2011
, “
Cohesive Modelling of Crack Nucleation in a Cylindrical Electrod Under Axisymmetric Diffusion Induced Stresses
,”
Int. J. Solids Struct.
,
48
(16–17), pp.
2304
2309
.
19.
Gao
,
H.
,
Zhang
,
T.-Y.
, and
Tong
,
P.
,
1997
, “
Local and Global Energy Release Rates for an Electrically Yielded Crack in a Piezoelectric Ceramic
,”
J. Mech. Phys. Solids
,
45
(
4
), pp.
491
510
.
20.
Goutianos
,
S.
, and
Sorensen
,
B. F.
,
2016
, “
The Application of J-Integral to Measure Cohesive Laws Under Large-Scale Yielding
,”
Eng. Fracture Mech.
,
155
, pp.
145
165
.
21.
Cox
,
B.
, and
Marshall
,
D. B.
,
1994
, “
Concepts for Bridged Cracks in Fracture and Fatigue
,”
Acta Metall. Mater.
,
42
(
2
), pp.
341
363
.
22.
Aveston
,
J.
, and
Kelly
,
A.
,
1973
, “
Theory of Multiple Fracture of Fibre Composites
,”
J. Mater. Sci.
,
8
(
3
), pp.
352
362
.
23.
Willis
,
J.
,
1967
, “
A Comparison of the Fracture Criteria of Griffith and Barenblatt
,”
J. Mech. Phys. Solids
,
15
(
3
), pp.
151
162
.
24.
Freddi
,
F.
, and
Royer-Carfagni
,
G.
,
2010
, “
Regularized Variational Theories of Fracture: A Unified Approach
,”
J. Mech. Phys. Solids
,
58
(
8
), pp.
1154
1174
.
25.
Focardi
,
M.
,
2001
, “
On the Variational Approximation of Free-Discontinuity Problems in the Vectorial Case
,”
Math. Models Methods Appl. Sci.
,
11
(04), pp.
663
684
.
26.
Lancioni
,
G.
, and
Royer-Carfagni
,
G.
,
2009
, “
The Variational Approach to Fracture Mechanics. A Practical Application to the French Panthéon in Paris
,”
J. Elasticity
,
95
(1), pp.
1
30
.
You do not currently have access to this content.