A spinning disk on a rough horizontal surface is a familiar example presented in the textbooks of classical mechanics. Recent studies have revealed that this simple system would exhibit an intriguing phenomenon that cannot be well examined by existing theories. Reason for that is due to the lack of reasonable understanding for the influence of combined sliding and rolling friction on the disk dynamics. To unveil how the two types of friction affect the disk motion, this paper presents a combined investigation of experiments and simulations on the dynamics of a spinning disk. We employed a pair of high-speed cameras to perform omnidirectional measurements for the six degrees-of-freedom in describing the disk motion. Numerical calculations are implemented under an integrated model including both the Coulomb friction law and a viscous rolling friction model. Exposure for the details of the disk motion in experiments and simulations sheds light on a novel mechanism underlying the rolling friction: the rolling friction exhibits viscosity relating to the square of rolling velocity.

References

References
1.
Urbakh
,
M.
,
Klafter
,
J.
,
Gourdon
,
D.
, and
Israelachvili
,
J.
,
2004
, “
The Nonlinear Nature of Friction
,”
Nature
,
430
(
6999
), pp.
525
528
.
2.
Stanislavsky
,
A.
, and
Weron
,
K.
,
2001
, “
Nonlinear Oscillations in the Rolling Motion of Euler's Disk
,”
Phys. D
,
156
(
3
), pp.
247
259
.
3.
Li
,
Q.
,
Tullis
,
T. E.
,
Goldsby
,
D.
, and
Carpick
,
R. W.
,
2011
, “
Frictional Ageing From Interfacial Bonding and the Origins of Rate and State Friction
,”
Nature
,
480
(
7376
), pp.
233
236
.
4.
Weidman
,
P.
, and
Malhotra
,
C.
,
2005
, “
Regimes of Terminal Motion of Sliding Spinning Disks
,”
Phys. Rev. Lett.
,
95
(
26
), p.
264303
.
5.
McLaren
,
K.
, and
Tabor
,
D.
,
1963
, “
Visco-Elastic Properties and the Friction of Solids: Friction of Polymers: Influence of Speed and Temperature
,”
Nature
,
197
(
4870
), pp.
856
858
.
6.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
, New York.
7.
Popov
,
V. L.
,
2010
,
Contact Mechanics and Friction
,
Springer-Verlag
, Berling, Heidelberg.
8.
Flom
,
D.
, and
Bueche
,
A.
,
1959
, “
Theory of Rolling Friction for Spheres
,”
J. Appl. Phys.
,
30
(
11
), pp.
1725
1730
.
9.
Greenwood
,
J.
,
Minshall
,
H.
, and
Tabor
,
D.
,
1961
, “
Hysteresis Losses in Rolling and Sliding Friction
,”
Proc. R. Soc. London, Ser. A
,
259
(
1299
), pp.
480
507
.
10.
Brilliantov
,
N. V.
, and
Pöschel
,
T.
,
1998
, “
Rolling Friction of a Viscous Sphere on a Hard Plane
,”
Europhys. Lett.
,
42
(
5
), pp.
511
–516.
11.
Yung
,
K.
, and
Xu
,
Y.
,
2003
, “
Non-Linear Expressions for Rolling Friction of a Soft Ball on a Hard Plane
,”
Nonlinear Dyn.
,
33
(
1
), pp.
33
41
.
12.
Persson
,
B. N.
,
2010
, “
Rolling Friction for Hard Cylinder and Sphere on Viscoelastic Solid
,”
Eur. Phys. J. E: Soft Matter Biol. Phys.
,
33
(
4
), pp.
327
333
.
13.
Carbone
,
G.
, and
Putignano
,
C.
,
2013
, “
A Novel Methodology to Predict Sliding and Rolling Friction of Viscoelastic Materials: Theory and Experiments
,”
J. Mech. Phys. Solids
,
61
(
8
), pp.
1822
1834
.
14.
Zéhil
,
G.-P.
, and
Gavin
,
H. P.
,
2014
, “
Rolling Resistance of a Rigid Sphere With Viscoelastic Coatings
,”
Int. J. Solids Struct.
,
51
(
3
), pp.
822
838
.
15.
Zheng
,
Q.
,
Zhu
,
H.
, and
Yu
,
A.
,
2011
, “
Finite Element Analysis of the Rolling Friction of a Viscous Particle on a Rigid Plane
,”
Powder Technol.
,
207
(
1
), pp.
401
406
.
16.
Putignano
,
C.
,
Reddyhoff
,
T.
,
Carbone
,
G.
, and
Dini
,
D.
,
2013
, “
Experimental Investigation of Viscoelastic Rolling Contacts: A Comparison With Theory
,”
Tribol. Lett.
,
51
(
1
), pp.
105
113
.
17.
Wetter
,
R.
, and
Popov
,
V.
,
2014
, “
Shakedown Limits for an Oscillating, Elastic Rolling Contact With Coulomb Friction
,”
Int. J. Solids Struct.
,
51
(
5
), pp.
930
935
.
18.
Vozdecký
,
L.
,
Bartoš
,
J.
, and
Musilová
,
J.
,
2014
, “
Rolling Friction-Models and Experiment. An Undergraduate Student Project
,”
Eur. J. Phys.
,
35
(
5
), p.
055004
.
19.
Moffatt
,
H.
,
2000
, “
Euler's Disk and Its Finite-Time Singularity
,”
Nature
,
404
(
6780
), pp.
833
834
.
20.
Kessler
,
P.
, and
O'Reilly
,
O.
,
2002
, “
The Ringing of Euler's Disk
,”
Regular Chaotic Dyn.
,
7
(
1
), pp.
49
60
.
21.
McDonald
,
A. J.
, and
McDonald
,
K. T.
,
2000
, “
The Rolling Motion of a Disk on a Horizontal Plane
,”
preprint arXiv: physics/0008227
.
22.
Easwar
,
K.
,
Rouyer
,
F.
, and
Menon
,
N.
,
2002
, “
Speeding to a Stop: The Finite-Time Singularity of a Spinning Disk
,”
Phys. Rev. E
,
66
(
4
), p.
045102
.
23.
Bildsten
,
L.
,
2002
, “
Viscous Dissipation for Euler's Disk
,”
Phys. Rev. E
,
66
(
5
), p.
056309
.
24.
Leine
,
R.
,
2009
, “
Experimental and Theoretical Investigation of the Energy Dissipation of a Rolling Disk During Its Final Stage of Motion
,”
Arch. Appl. Mech.
,
79
(
11
), pp.
1063
1082
.
25.
van den Engh
,
G.
,
Nelson
,
P.
, and
Roach
,
J.
,
2000
, “
Analytical Dynamics: Numismatic Gyrations
,”
Nature
,
408
(
6812
), p.
540
.
26.
Caps
,
H.
,
Dorbolo
,
S.
,
Ponte
,
S.
,
Croisier
,
H.
, and
Vandewalle
,
N.
,
2004
, “
Rolling and Slipping Motion of Euler's Disk
,”
Phys. Rev. E
,
69
(
5
), p.
056610
.
27.
Le Saux
,
C.
,
Leine
,
R.
, and
Glocker
,
C.
,
2005
, “
Dynamics of a Rolling Disk in the Presence of Dry Friction
,”
J. Nonlinear Sci.
,
15
(
1
), pp.
27
61
.
28.
Bhattacharjee
,
S.
,
2014
, “
Spinning Disks Under Gravity
,”
Europhys. Lett.
,
107
(
5
), p.
54007
.
29.
Ma
,
D.
,
Liu
,
C.
,
Zhao
,
Z.
, and
Zhang
,
H.
,
2014
, “
Rolling Friction and Energy Dissipation in a Spinning Disc
,”
Proc. R. Soc. A
,
470
(
2169
), p.
20140191
.
30.
Jalali
,
M. A.
,
Sarebangholi
,
M. S.
, and
Alam
,
M.-R.
,
2015
, “
Terminal Retrograde Turn of Rolling Rings
,”
Phys. Rev. E
,
92
(
3
), p.
032913
.
31.
Liu
,
C.
,
Zhang
,
H.
,
Zhao
,
Z.
, and
Brogliato
,
B.
,
2013
, “
Impact-Contact Dynamics in a Disc-Ball System
,”
Proc. R. Soc. A
,
469
(
2152
), p. 20120741.
32.
Zhong
,
H.
,
Lee
,
C.
,
Su
,
Z.
,
Chen
,
S.
,
Zhou
,
M.
, and
Wu
,
J.
,
2013
, “
Experimental Investigation of Freely Falling Thin Disks. Part 1. The Flow Structures and Reynolds Number Effects on the Zigzag Motion
,”
J. Fluid Mech.
,
716
, pp.
228
250
.
33.
Rabinowicz
,
E.
,
1951
, “
The Nature of the Static and Kinetic Coefficients of Friction
,”
J. Appl. Phys.
,
22
(
11
), pp.
1373
1379
.
You do not currently have access to this content.