A variationally consistent approach to constrained rigid-body motion is presented that extends D'Alembert's principle in a way that has a form similar to Kane's equations. The method results in minimal equations of motion for both holonomic and nonholonomic systems without a priori consideration of preferential coordinates.

References

References
1.
Lagrange
,
J. L.
,
1853
,
Mécanique analytique
, Vol.
1
,
Mallet-Bachelier
,
Paris
.
2.
Appell
,
P.
,
1911
, “
Exemple du mouvement d'un systeme assujetti à une liason exprimée par une relation non linéaires entre des composantes de la vitesse
,”
Rend. Circ. Mat. Palermo
,
32
, pp.
48
50
.
3.
Ray
,
J. R.
,
1972
, “
Nonholonomic Constraints and Gauss's Principle of Least Constraint
,”
Am. J. Phys.
,
40
(
1
), pp.
179
183
.
4.
Maggi
,
G. A.
,
1896
,
Principii della teoria matematica del movimento dei corpi: corso di meccanica razionale
,
Ulrico Hoepli
, Milan, Italy.
5.
Maggi
,
G. A.
,
1901
, “
Di alcune nuove forme delle equazioni della Dinamica applicabili ai systemi anolonomi
,”
Atti della Reale Accademia dei Lincei, Rendiconti, Classe di scienze fisiche, matematiche e naturali, Seria 5
,
10
(12), pp.
287
292
.
6.
Papastavridis
,
J. G.
,
1990
, “
Maggi's Equations of Motion and the Determination of Constraint Reactions
,”
J. Guid., Control, Dyn.
,
13
(
2
), pp.
213
220
.
7.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
1992
, “
A New Perspective on Constrained Motion
,”
Proc. R. Soc. London, Ser. A
,
439
(
1906
), pp.
407
410
.
8.
Barhorst
,
A. A.
,
1995
, “
An Alternative Derivation of Some New Perspectives on Constrained Motion
,”
ASME J. Appl. Mech.
,
62
(
1
), pp.
243
245
.
9.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1985
,
Dynamics, Theory and Applications
,
McGraw Hill
, New York.
10.
Desloge
,
E. A.
,
1987
, “
Relationship Between Kane's Equations and the Gibbs–Appell Equations
,”
J. Guid., Control, Dyn.
,
10
(
1
), pp.
120
122
.
11.
Gibbs
,
J. W.
,
1961
,
The Scientific Papers of JW Gibbs
, Vol.
1
,
Dover Publications
, NY.
12.
Gatland
,
I. R.
,
2004
, “
Nonholonomic Constraints: A Test Case
,”
Am. J. Phys.
,
72
(
7
), pp.
941
942
.
13.
Barhorst
,
A. A.
,
2004
, “
Systematic Closed Form Modeling of Hybrid Parameter Multiple Body Systems
,”
Int. J. Non-Linear Mech.
,
39
(
1
), pp.
63
78
.
14.
Barhorst
,
A. A.
,
2004
, “
On the Efficacy of Pseudo-Coordinates—Part 1: Moving Interior Constraints
,”
Int. J. Non-Linear Mech.
,
39
(
1
), pp.
123
135
.
15.
Barhorst
,
A. A.
,
2004
, “
On the Efficacy of Pseudo-Coordinates—Part 2: Moving Boundary Constraints
,”
Int. J. Non-Linear Mech.
,
39
(
1
), pp.
137
151
.
You do not currently have access to this content.