It has been recognized that cells are able to actively sense and respond to the mechanical signals through an orchestration of many subcellular processes, such as cytoskeleton remodeling, nucleus reorientation, and polarization. However, the underlying mechanisms that regulate these behaviors are largely elusive; in particular, the quantitative understanding of these mechanical responses is lacking. In this study, combining experimental measurement and theoretical modeling, we studied the effects of rigidity and pattern geometry of substrate on collective cell behaviors. We showed that the mechanical force took pivotal roles in regulating the alignment and polarization of cells and subcellular structures. The cell, cytoskeleton, and nucleus preferred to align and polarize along the direction of maximum principal stress in cell monolayer, and the driving force is the in-plane maximum shear stress. The higher the maximum shear stress, the more the cells and their subcellular structures preferred to align and polarize along the direction of maximum principal stress. In addition, we proved that in response to the change of in-plane shear stresses, the actin cytoskeleton is more sensitive than the nucleus. This work provides important insights into the mechanisms of cellular and subcellular responses to mechanical signals. And it also suggests that the mechanical force does matter in cell behaviors, and quantitative studies through mechanical modeling are indispensable in biomedical and tissue engineering applications.

References

References
1.
Thery
,
M.
,
Pepin
,
A.
,
Dressaire
,
E.
,
Chen
,
Y.
, and
Bornens
,
M.
,
2006
, “
Cell Distribution of Stress Fibres in Response to the Geometry of the Adhesive Environment
,”
Cell Motil. Cytoskeleton
,
63
(
6
), pp.
341
355
.
2.
Rape
,
A. D.
,
Guo
,
W. H.
, and
Wang
,
Y. L.
,
2011
, “
The Regulation of Traction Force in Relation to Cell Shape and Focal Adhesions
,”
Biomaterials
,
32
(
8
), pp.
2043
2051
.
3.
Chen
,
C. S.
,
Mrksich
,
M.
,
Huang
,
S.
,
Whitesides
,
G. M.
, and
Ingber
,
D. E.
,
1997
, “
Geometric Control of Cell Life and Death
,”
Science
,
276
(
5317
), pp.
1425
1428
.
4.
Fu
,
R.
,
Liu
,
Q.
,
Song
,
G.
,
Baik
,
A.
,
Hu
,
M.
,
Sun
,
S.
,
Guo
,
X. E.
,
Long
,
M.
, and
Huo
,
B.
,
2013
, “
Spreading Area and Shape Regulate Apoptosis and Differentiation of Osteoblasts
,”
Biomed. Mater.
,
8
(
5
), p.
055005
.
5.
Elineni
,
K. K.
, and
Gallant
,
N. D.
,
2011
, “
Regulation of Cell Adhesion Strength by Peripheral Focal Adhesion Distribution
,”
Biophys. J.
,
101
(
12
), pp.
2903
2911
.
6.
Kilian
,
K. A.
,
Bugarija
,
B.
,
Lahn
,
B. T.
, and
Mrksich
,
M.
,
2010
, “
Geometric Cues for Directing the Differentiation of Mesenchymal Stem Cells
,”
Proc. Natl. Acad. Sci. U.S.A.
,
107
(
11
), pp.
4872
4877
.
7.
McBeath
,
R.
,
Pirone
,
D. M.
,
Nelson
,
C. M.
,
Bhadriraju
,
K.
, and
Chen
,
C. S.
,
2004
, “
Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment
,”
Dev. Cell
,
6
(
4
), pp.
483
495
.
8.
Tee
,
S. Y.
,
Fu
,
J.
,
Chen
,
C. S.
, and
Janmey
,
P. A.
,
2011
, “
Cell Shape and Substrate Rigidity Both Regulate Cell Stiffness
,”
Biophys. J.
,
100
(
5
), pp.
L25
27
.
9.
Chen
,
B.
,
Kumar
,
G.
,
Co
,
C. C.
, and
Ho
,
C. C.
,
2013
, “
Geometric Control of Cell Migration
,”
Sci. Rep.
,
3
, p.
2827
.
10.
Wan
,
L. Q.
,
Kang
,
S. M.
,
Eng
,
G.
,
Grayson
,
W. L.
,
Lu
,
X. L.
,
Huo
,
B.
,
Gimble
,
J.
,
Guo
,
X. E.
,
Mow
,
V. C.
, and
Vunjak-Novakovic
,
G.
,
2010
, “
Geometric Control of Human Stem Cell Morphology and Differentiation
,”
Integr. Biol.-UK
,
2
(
7–8
), pp.
346
353
.
11.
Wan
,
L. Q.
,
Ronaldson
,
K.
,
Park
,
M.
,
Taylor
,
G.
,
Zhang
,
Y.
,
Gimble
,
J. M.
, and
Vunjak-Novakovic
,
G.
,
2011
, “
Micropatterned Mammalian Cells Exhibit Phenotype-Specific Left-Right Asymmetry
,”
Proc. Natl. Acad. Sci. U.S.A.
,
108
(
30
), pp.
12295
12300
.
12.
Luo
,
W.
,
Jones
,
S. R.
, and
Yousaf
,
M. N.
,
2008
, “
Geometric Control of Stem Cell Differentiation Rate on Surfaces
,”
Langmuir
,
24
(
21
), pp.
12129
12133
.
13.
Ruiz
,
S. A.
, and
Chen
,
C. S.
,
2008
, “
Emergence of Patterned Stem Cell Differentiation Within Multicellular Structures
,”
Stem Cells
,
26
(
11
), pp.
2921
2927
.
14.
Ghibaudo
,
M.
,
Saez
,
A.
,
Trichet
,
L.
,
Xayaphoummine
,
A.
,
Browaeys
,
J.
,
Silberzan
,
P.
,
Buguin
,
A.
, and
Ladoux
,
B.
,
2008
, “
Traction Forces and Rigidity Sensing Regulate Cell Functions
,”
Soft Matter
,
4
(
9
), pp.
1836
1843
.
15.
Saez
,
A.
,
Buguin
,
A.
,
Silberzan
,
P.
, and
Ladoux
,
B.
,
2005
, “
Is the Mechanical Activity of Epithelial Cells Controlled by Deformations or Forces?
,”
Biophys. J.
,
89
(
6
), pp.
L52
L54
.
16.
Weng
,
S.
, and
Fu
,
J.
,
2011
, “
Synergistic Regulation of Cell Function by Matrix Rigidity and Adhesive Pattern
,”
Biomaterials
,
32
(
36
), pp.
9584
9593
.
17.
Fu
,
J.
,
Wang
,
Y.-K.
,
Yang
,
M. T.
,
Desai
,
R. A.
,
Yu
,
X.
,
Liu
,
Z.
, and
Chen
,
C. S.
,
2010
, “
Mechanical Regulation of Cell Function With Geometrically Modulated Elastomeric Substrates
,”
Nat. Methods
,
7
(
9
), pp.
733
736
.
18.
Balaban
,
N. Q.
,
Schwarz
,
U. S.
,
Riveline
,
D.
,
Goichberg
,
P.
,
Tzur
,
G.
,
Sabanay
,
I.
,
Mahalu
,
D.
,
Safran
,
S. A.
,
Bershadsky
,
A.
,
Addadi
,
L.
, and
Geiger
,
B.
,
2001
, “
Force and Focal Adhesion Assembly: A Close Relationship Studied Using Elastic Micropatterned Substrates
,”
Nat. Cell Biol.
,
3
(
5
), pp.
466
472
.
19.
Riveline
,
D.
,
Zamir
,
E.
,
Balaban
,
N. Q.
,
Schwarz
,
U. S.
,
Ishizaki
,
T.
,
Narumiya
,
S.
,
Kam
,
Z.
,
Geiger
,
B.
, and
Bershadsky
,
A. D.
,
2001
, “
Focal Contacts as Mechanosensors: Externally Applied Local Mechanical Force Induces Growth of Focal Contacts by an Mdia1 Dependent and ROCK-Independent Mechanism
,”
J. Cell Biol.
,
153
(
6
), pp.
1175
1186
.
20.
Tan
,
J. L.
,
Tien
,
J.
,
Pirone
,
D. M.
,
Gray
,
D. S.
,
Bhadriraju
,
K.
, and
Chen
,
C. S.
,
2003
, “
From the Cover: Cells Lying on a Bed of Microneedles: An Approach to Isolate Mechanical Force
,”
Proc. Natl. Acad. Sci. U.S.A.
,
100
(
4
), pp.
1484
1489
.
21.
Sen
,
S.
,
Engler
,
A. J.
, and
Discher
,
D. E.
,
2009
, “
Matrix Strains Induced by Cells: Computing How Far Cells Can Feel
,”
Cell. Mol. Bioeng.
,
2
(
1
), pp.
39
48
.
22.
Mih
,
J. D.
,
Marinkovic
,
A.
,
Liu
,
F.
,
Sharif
,
A. S.
, and
Tschumperlin
,
D. J.
,
2012
, “
Matrix Stiffness Reverses the Effect of Actomyosin Tension on Cell Proliferation
,”
J. Cell Sci.
,
125
(
Pt 24
), pp.
5974
5983
.
23.
Engler
,
A. J.
,
Sen
,
S.
,
Sweeney
,
H. L.
, and
Discher
,
D. E.
,
2006
, “
Matrix Elasticity Directs Stem Cell Lineage Specification
,”
Cell
,
126
(
4
), pp.
677
689
.
24.
Saez
,
A.
,
Ghibaudo
,
M.
,
Buguin
,
A.
,
Silberzan
,
P.
, and
Ladoux
,
B.
,
2007
, “
Rigidity-Driven Growth and Migration of Epithelial Cells on Microstructured Anisotropic Substrates
,”
Proc. Natl. Acad. Sci. U.S.A.
,
104
(
20
), pp.
8281
8286
.
25.
Lo
,
C. M.
,
Wang
,
H. B.
,
Dembo
,
M.
, and
Wang
,
Y. L.
,
2000
, “
Cell Movement is Guided by the Rigidity of the Substrate
,”
Biophys. J.
,
79
(
1
), pp.
144
152
.
26.
Stroka
,
K. M.
, and
Aranda-Espinoza
,
H.
,
2009
, “
Neutrophils Display Biphasic Relationship Between Migration and Substrate Stiffness
,”
Cell Motil. Cytoskeleton
,
66
(
6
), pp.
328
341
.
27.
Peyton
,
S. R.
, and
Putnam
,
A. J.
,
2005
, “
Extracellular Matrix Rigidity Governs Smooth Muscle Cell Motility in a Biphasic Fashion
,”
J. Cell. Physiol.
,
204
(
1
), pp.
198
209
.
28.
Pathak
,
A.
, and
Kumar
,
S.
,
2012
, “
Independent Regulation of Tumor Cell Migration by Matrix Stiffness and Confinement
,”
Proc. Natl. Acad. Sci. U.S.A.
,
109
(
26
), pp.
10334
10339
.
29.
Zhong
,
Y.
,
He
,
S.
, and
Ji
,
B.
,
2012
, “
Mechanics in Mechanosensitivity of Cell Adhesion and Its Roles in Cell Migration
,”
Int. J. Comput. Mater. Sci. Eng.
,
1
(
4
), p.
1250032
.
30.
Zhong
,
Y.
, and
Ji
,
B.
,
2013
, “
Impact of Cell Shape on Cell Migration Behavior on Elastic Substrate
,”
Biofabrication
,
5
(
1
), p.
015011
.
31.
Zhong
,
Y.
, and
Ji
,
B.
,
2014
, “
How Do Cells Produce and Regulate the Driving Force in the Process of Migration?
,”
Eur. Phys. J.: Spec. Top.
,
223
(
7
), pp.
1373
1390
.
32.
Tondon
,
A.
, and
Kaunas
,
R.
,
2014
, “
The Direction of Stretch-Induced Cell and Stress Fiber Orientation Depends on Collagen Matrix Stress
,”
PLoS One
,
9
(
2
), p.
e89592
.
33.
Shamloo
,
A.
,
2014
, “
Cell-Cell Interactions Mediate Cytoskeleton Organization and Collective Endothelial Cell Chemotaxis
,”
Cytoskeleton
,
71
(
9
), pp.
501
512
.
34.
Hayakawa
,
K.
,
Sato
,
N.
, and
Obinata
,
T.
,
2001
, “
Dynamic Reorientation of Cultured Cells and Stress Fibers Under Mechanical Stress From Periodic Stretching
,”
Exp. Cell Res.
,
268
(
1
), pp.
104
114
.
35.
Zhong
,
Y.
,
Kong
,
D.
,
Dai
,
L.
, and
Ji
,
B.
,
2011
, “
Frequency-Dependent Focal Adhesion Instability and Cell Reorientation Under Cyclic Substrate Stretching
,”
Cell. Mol. Bioeng.
,
4
(
3
), pp.
442
456
.
36.
Kong
,
D.
,
Ji
,
B.
, and
Dai
,
L.
,
2008
, “
Stability of Adhesion Clusters and Cell Reorientation Under Lateral Cyclic Tension
,”
Biophys. J.
,
95
(
8
), pp.
4034
4044
.
37.
Kong
,
D.
,
Ji
,
B.
, and
Dai
,
L.
,
2010
, “
Stabilizing to Disruptive Transition of Focal Adhesion Response to Mechanical Forces
,”
J. Biomech.
,
43
(
13
), pp.
2524
2529
.
38.
He
,
S.
,
Liu
,
C.
,
Li
,
X.
,
Ma
,
S.
,
Huo
,
B.
, and
Ji
,
B.
,
2015
, “
Dissecting Collective Cell Behavior in Polarization and Alignment on Micropatterned Substrates
,”
Biophys. J.
,
109
(
3
), pp.
489
500
.
39.
Dahl
,
K. N.
,
Kahn
,
S. M.
,
Wilson
,
K. L.
, and
Discher
,
D. E.
,
2004
, “
The Nuclear Envelope Lamina Network Has Elasticity and a Compressibility Limit Suggestive of a Molecular Shock Absorber
,”
J. Cell Sci.
,
117
(
Pt 20
), pp.
4779
4786
.
40.
Chalut
,
K. J.
,
Kulangara
,
K.
,
Giacomelli
,
M. G.
,
Wax
,
A.
, and
Leong
,
K. W.
,
2010
, “
Deformation of Stem Cell Nuclei by Nanotopographical Cues
,”
Soft Matter
,
6
(
8
), pp.
1675
1681
.
41.
Rohde
,
G. K.
,
Ribeiro
,
A. J. S.
,
Dahl
,
K. N.
, and
Murphy
,
R. F.
,
2008
, “
Deformation-Based Nuclear Morphometry: Capturing Nuclear Shape Variation in HeLa Cells
,”
Cytometry, Part A
,
73A
(
4
), pp.
341
350
.
42.
Desai
,
R. A.
,
Gao
,
L.
,
Raghavan
,
S.
,
Liu
,
W. F.
, and
Chen
,
C. S.
,
2009
, “
Cell Polarity Triggered by Cell-Cell Adhesion Via E-Cadherin
,”
J. Cell Sci.
,
122
(
Pt 7
), pp.
905
911
.
43.
Schirmer
,
E. C.
, and
Foisner
,
R.
,
2007
, “
Proteins That Associate With Lamins: Many Faces, Many Functions
,”
Exp. Cell Res.
,
313
(
10
), pp.
2167
2179
.
44.
Anno
,
T.
,
Sakamoto
,
N.
, and
Sato
,
M.
,
2012
, “
Role of Nesprin-1 in Nuclear Deformation in Endothelial Cells Under Static and Uniaxial Stretching Conditions
,”
Biochem. Biophys. Res. Commun.
,
424
(
1
), pp.
94
99
.
45.
Dembo
,
M.
, and
Wang
,
Y. L.
,
1999
, “
Stresses at the Cell-to-Substrate Interface During Locomotion of Fibroblasts
,”
Biophys. J.
,
76
(
4
), pp.
2307
2316
.
46.
Lindner
,
D.
,
Mathieu
,
F.
,
Hild
,
F.
,
Allix
,
O.
,
Minh
,
C. H.
, and
Paulien-Camy
,
O.
,
2015
, “
On the Evaluation of Stress Triaxiality Fields in a Notched Titanium Alloy Sample Via Integrated Digital Image Correlation
,”
ASME J. Appl. Mech.
,
82
(
7
), p.
071014
.
47.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1986
,
Theory of Elasticity
,
3rd ed.
,
E. M.
Lifshitz
,
A. M.
Kosevich
, and
L. P.
Pitaevskii
, eds.,
Butterworth-Heinemann
,
Oxford, UK
, p.
vii
.
48.
Butler
,
J. P.
,
Tolic-Norrelykke
,
I. M.
,
Fabry
,
B.
, and
Fredberg
,
J. J.
,
2002
, “
Traction Fields, Moments, and Strain Energy That Cells Exert on Their Surroundings
,”
Am. J. Physiol.: Cell Physiol.
,
282
(
3
), pp.
C595
605
.
49.
Tambe
,
D. T.
,
Hardin
,
C. C.
,
Angelini
,
T. E.
,
Rajendran
,
K.
,
Park
,
C. Y.
,
Serra-Picamal
,
X.
,
Zhou
,
E. H.
,
Zaman
,
M. H.
,
Butler
,
J. P.
,
Weitz
,
D. A.
,
Fredberg
,
J. J.
, and
Trepat
,
X.
,
2011
, “
Collective Cell Guidance by Cooperative Intercellular Forces
,”
Nat. Mater.
,
10
(
6
), pp.
469
475
.
50.
Serra-Picamal
,
X.
,
Conte
,
V.
,
Vincent
,
R.
,
Anon
,
E.
,
Tambe
,
D. T.
,
Bazellieres
,
E.
,
Butler
,
J. P.
,
Fredberg
,
J. J.
, and
Trepat
,
X.
,
2012
, “
Mechanical Waves During Tissue Expansion
,”
Nat. Phys.
,
8
(
8
), pp.
628
634
.
51.
Rezakhaniha
,
R.
,
Agianniotis
,
A.
,
Schrauwen
,
J. T.
,
Griffa
,
A.
,
Sage
,
D.
,
Bouten
,
C. V.
,
van de Vosse
,
F. N.
,
Unser
,
M.
, and
Stergiopulos
,
N.
,
2012
, “
Experimental Investigation of Collagen Waviness and Orientation in the Arterial Adventitia Using Confocal Laser Scanning Microscopy
,”
Biomech. Model. Mechanobiol.
,
11
(
3–4
), pp.
461
473
.
52.
Edwards
,
C. M.
, and
Schwarz
,
U. S.
,
2011
, “
Force Localization in Contracting Cell Layers
,”
Phys. Rev. Lett.
,
107
(
12
), p.
128101
.
53.
He
,
S.
,
Su
,
Y.
,
Ji
,
B.
, and
Gao
,
H.
,
2014
, “
Some Basic Questions on Mechanosensing in Cell–Substrate Interaction
,”
J. Mech. Phys. Solids
,
70
, pp.
116
135
.
54.
Li
,
L.
,
Yao
,
H.
, and
Wang
,
J.
,
2015
, “
Dynamic Strength of Molecular Bond Clusters Under Displacement- and Force-Controlled Loading Conditions
,”
ASME J. Appl. Mech.
,
83
(
2
), p.
021004
.
55.
Chen
,
X.
, and
Chen
,
B.
,
2014
, “
Probing the Instability of a Cluster of Slip Bonds Upon Cyclic Loads With a Coupled Finite Element Analysis and Monte Carlo Method
,”
ASME J. Appl. Mech.
,
81
(
11
), p.
111002
.
56.
Deguchi
,
S.
,
Ohashi
,
T.
, and
Sato
,
M.
,
2006
, “
Tensile Properties of Single Stress Fibers Isolated From Cultured Vascular Smooth Muscle Cells
,”
J. Biomech.
,
39
(
14
), pp.
2603
2610
.
57.
Lu
,
L.
,
Feng
,
Y. F.
,
Hucker
,
W. J.
,
Oswald
,
S. J.
,
Longmore
,
G. D.
, and
Yin
,
F. C. P.
,
2008
, “
Actin Stress Fiber Pre-Extension in Human Aortic Endothelial Cells
,”
Cell Motil. Cytoskeleton
,
65
(
4
), pp.
281
294
.
58.
Schwarz
,
U. S.
,
Erdmann
,
T.
, and
Bischofs
,
I. B.
,
2006
, “
Focal Adhesions as Mechanosensors: The Two-Spring Model
,”
Biosystems
,
83
(
2–3
), pp.
225
232
.
59.
Kendall
,
K.
,
1971
, “
The Adhesion and Surface Energy of Elastic Solids
,”
J. Phys. D: Appl. Phys.
,
4
(
8
), p.
1186
.
60.
Trepat
,
X.
,
Wasserman
,
M. R.
,
Angelini
,
T. E.
,
Millet
,
E.
,
Weitz
,
D. A.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
,
2009
, “
Physical Forces During Collective Cell Migration
,”
Nat. Phys.
,
5
(
6
), pp.
426
430
.
61.
Gruenbaum
,
Y.
,
Wilson
,
K. L.
,
Harel
,
A.
,
Goldberg
,
M.
, and
Cohen
,
M.
,
2000
, “
Nuclear Lamins-Structural Proteins With Fundamental Functions
,”
J. Struct. Biol.
,
129
(
2–3
), pp.
313
323
.
62.
Thery
,
M.
,
2010
, “
Micropatterning as a Tool to Decipher Cell Morphogenesis and Functions
,”
J. Cell Sci.
,
123
(
24
), pp.
4201
4213
.
63.
De
,
R.
,
Zemel
,
A.
, and
Safran
,
S. A.
,
2007
, “
Dynamics of Cell Orientation
,”
Nat. Phys.
,
3
(
9
), pp.
655
659
.
64.
Bischofs
,
I. B.
, and
Schwarz
,
U. S.
,
2003
, “
Cell Organization in Soft Media Due to Active Mechanosensing
,”
Proc. Natl. Acad. Sci. U.S.A.
,
100
(
16
), pp.
9274
9279
.
65.
Yim
,
E. K.
,
Reano
,
R. M.
,
Pang
,
S. W.
,
Yee
,
A. F.
,
Chen
,
C. S.
, and
Leong
,
K. W.
,
2005
, “
Nanopattern-Induced Changes in Morphology and Motility of Smooth Muscle Cells
,”
Biomaterials
,
26
(
26
), pp.
5405
5413
.
66.
Mertz
,
A. F.
,
Banerjee
,
S.
,
Che
,
Y.
,
German
,
G. K.
,
Xu
,
Y.
,
Hyland
,
C.
,
Marchetti
,
M. C.
,
Horsley
,
V.
, and
Dufresne
,
E. R.
,
2012
, “
Scaling of Traction Forces With the Size of Cohesive Cell Colonies
,”
Phys. Rev. Lett.
,
108
(
19
), p.
198101
.
67.
Reinhart-King
,
C. A.
,
Dembo
,
M.
, and
Hammer
,
D. A.
,
2008
, “
Cell-Cell Mechanical Communication Through Compliant Substrates
,”
Biophys. J.
,
95
(
12
), pp.
6044
6051
.
68.
Guo
,
W. H.
,
Frey
,
M. T.
,
Burnham
,
N. A.
, and
Wang
,
Y. L.
,
2006
, “
Substrate Rigidity Regulates the Formation and Maintenance of Tissues
,”
Biophys. J.
,
90
(
6
), pp.
2213
2220
.
You do not currently have access to this content.