Tensile stability of healthy medial arterial tissue and its constituents, subject to initial geometrical and/or material imperfections, is investigated based on the long wavelength approximation. The study employs existing constitutive models for elastin, collagen, and vascular smooth muscle which comprise the medial layer of large elastic (conducting) arteries. A composite constitutive model is presented based on the concept of the musculoelastic fascicle (MEF) which is taken to be the essential building block of medial arterial tissue. Nonlinear equations governing axial stretch and areal stretch imperfection growth quantities are obtained and solved numerically. Exact, closed-form results are presented for both initial and terminal rates of imperfection growth with nominal load. The results reveal that geometrical imperfections, in the form of area nonuniformities, and material imperfections, in the form of constitutive parameter nonuniformities, either decrease or increase only slightly with increasing nominal load; a result which is to be expected for healthy tissue. By way of contrast, an examination of a simple model for elastin with a degrading stiffness gives rise to unbounded imperfection growth rates at finite values of nominal load. The latter result indicates how initial geometrical and material imperfections in diseased tissues might behave, a topic of future study by the authors.

References

References
1.
Walsh
,
M. T.
,
Cunnane
,
E. M.
,
Mulvihill
,
J. J.
,
Akyildiz
,
A. C.
,
Gijsen
,
F. J. H.
, and
Holzapfel
,
G. A.
,
2014
, “
Uniaxial Tensile Testing Approaches for Characterization of Atherosclerotic Plaques
,”
J. Biomech.
,
47
(
4
), pp.
793
804
.
2.
Hutchinson
,
J. W.
, and
Neale
,
K. W.
,
1977
, “
Influence of Strain-Rate Sensitivity on Necking Under Uniaxial Tension
,”
Acta Metall.
,
25
(
8
), pp.
839
846
.
3.
Hutchinson
,
J. W.
, and
Obrecht
,
H.
,
1977
, “
Tensile Instabilities in Strain Rate Dependent Materials
,”
International Conference on Fracture
(
ICF4
), Waterloo, ON, Canada, June 19–24, pp.
101
116
.
4.
Levy
,
A. J.
,
1986
, “
The Tertiary Creep and Necking of Creep Damaging Solids
,”
Acta Metall.
,
34
(
10
), pp.
1991
1997
.
5.
Levy
,
A. J.
,
1987
, “
Tensile Instability in Creep Damaging Solids
,”
Acta Metall.
,
35
(
10
), pp.
2583
2592
.
6.
Clark
,
J. M.
, and
Glagov
,
H.
,
1985
, “
Transmural Organization of the Arterial Media. The Lamellar Unit Revisited
,”
Arterioscler., Thromb., Vasc. Biol.
,
5
(
1
), pp.
19
34
.
7.
Wolinsky
,
H.
, and
Glagov
,
S.
,
1967
, “
A Lamellar Unit of Aortic Medial Structure and Function in Mammals
,”
Circ. Res.
,
20
(
1
), pp.
99
111
.
8.
Carew
,
T. E.
,
Vaishnav
,
R. N.
, and
Patel
,
D. J.
,
1968
, “
Compressibility of the Arterial Wall
,”
Circ. Res.
,
23
(
1
), pp.
61
68
.
9.
Hoeve
,
C. A. J.
, and
Flory
,
P. J.
,
1974
, “
The Elastic Properties of Elastin
,”
Biopolymers
,
13
(
4
), pp.
677
686
.
10.
Gundiah
,
N.
,
Ratcliffe
,
M. B.
, and
Pruitt
,
L. A.
,
2007
, “
Determination of Strain Energy Function for Arterial Elastin: Experiments Using Histology and Mechanical Tests
,”
J. Biomech.
,
40
(
3
), pp.
586
594
.
11.
Blatz
,
P. J.
,
Chu
,
B. M.
, and
Wayland
,
H.
,
1969
, “
On the Mechanical Behavior of Elastic Animal Tissue
,”
Trans. Soc. Rheol.
,
13
(
1
), pp.
83
102
.
12.
Valanis
,
K. C.
, and
Landel
,
R. F.
,
1967
, “
The Strain Energy Function of a Hyperelastic Material in Terms of the Extension Ratios
,”
J. Appl. Phys.
,
38
(
7
), pp.
2997
3002
.
13.
Yin
,
F. C. P.
, and
Fung
,
Y. C.
,
1971
, “
Mechanical Properties of Isolated Mammalian Ureteral Segments
,”
Am. J. Physiol.
,
221
, pp.
1484
1493
.
14.
Garikipati
,
K.
,
Goktepe
,
S.
, and
Miehe
,
C.
,
2008
, “
Elastica-Based Strain Energy Functions for Soft Biological Tissue
,”
J. Mech. Phys. Solids
,
56
(
4
), pp.
1693
1713
.
15.
Lally
,
C.
,
Reid
,
A. J.
, and
Prendergast
,
P. J.
,
2004
, “
Elastic Behavior of Porcine Coronary Artery Tissue Under Uniaxial and Equibiaxial Tension
,”
Ann. Biomed. Eng.
,
32
(
10
), pp.
1355
1364
.
16.
Ludwik
,
P.
,
1909
,
Elemente der Technologischen Mechanik
,
Springer Verlag
,
Berlin
.
17.
Hollomon
,
H.
,
1945
, “
Tensile Deformation
,”
Trans. Am. Inst. Min., Metall. Pet. Eng.
,
162
, pp.
268
290
.
18.
Faury
,
G.
,
Maher
,
G. M.
,
Li
,
D. Y.
,
Keating
,
M. T.
,
Mecham
,
R. P.
, and
Boyle
,
W. A.
,
1999
, “
Relation Between Outer and Luminal Diameter in Cannulated Arteries
,”
Am. Physiol. Soc.
,
277
(
5
), pp.
1745
1753
.
19.
Glagov
,
S.
, and
Wolinsky
,
H.
,
1963
, “
Aortic Wall as a Two Phase Material
,”
Nature
,
199
(
4893
), pp.
606
608
.
20.
Cox
,
R. H.
,
1978
, “
Passive Mechanics and Connective Tissue Composition of Canine Arteries
,”
Am. J. Physiol.
,
234
(
5
), pp.
H533
H541
.
You do not currently have access to this content.